
Linear and Quadratic Programming

by Unique Sink Orientations

Diploma thesis in Mathematics

ETH Zürich

Martin Jaggi
Bergweidstrasse 8

CH-9200 Gossau

martin@m8j.net

 supervised by Dr. Bernd Gärtner
gaertner@inf.ethz.ch

(Prof. Emo Welzl, Institute of Theoretical Computer Science)

September 2006

Abstract Linear programming and convex quadratic programming are two
of the most frequent classes of optimisation problems that occur in practice.
It has just recently been shown that every linear program (LP) in n variables
and m equality constraints in a natural way defines a unique sink orientation
of the edges of the n dimensional cube, with the sink of the cube telling us an
optimal solution to the LP, or a certificate for infeasibility or unboundedness.
In this thesis this method is generalised to convex quadratic programming,
resulting in the fastest known deterministic algorithm for convex quadratic
programming in the RAM model, for the central case n = 2m. Furthermore,
a perturbation method is presented to speed up the algorithm for LP. The
connection between the new approach for LP and symmetric P -matrix linear
complementarity problems (PLCP) is studied, and a regularisation method is
suggested for LP. Finally a first implementation of the algorithm is realised.

Zusammenfassung Lineare Programmierung und konvexe quadratische
Programmierung sind zwei der häufigsten Klassen von Optimierungsproble-
men die in der Praxis auftreten. Kürzlich wurde gezeigt, dass jedes lineare
Programm (LP) in n Variablen und m Gleichungen in einer natürlichen Weise
eine Eindeutige-Senke-Orientierung der Kanten des n-dimensionalen Würfels
definiert, wobei die Senke dieser Orientierung eine optimale Lösung des LP
liefert, oder ansonsten ein Zertifikat für Unlösbarkeit oder Unbeschränktheit.
In dieser Arbeit wird diese Methode verallgemeinert für konvexe quadratis-
che Programmierung, und ergibt den schnellsten bekannten deterministischen
Algorithmus für konvexe quadratische Programmierung im RAM-Modell,
für den ‘zentralen’ Fall n = 2m. Zudem wird eine Perturbations-Methode
präsentiert, um den Algorithmus für LP weiter zu beschleunigen. Die Verbind-
ung des neuen Ansatzes für LP mit dem symmetrischen P-Matrix Linearen
Komplementaritätsproblem wird untersucht, und es wird eine Regularisie-
rungs-Methode für LP vorgeschlagen. Zuletzt wird eine erste Implemen-
tierung des Algorithmus realisiert.

Keywords Convex Optimisation, Linear Programming, Quadratic Pro-
gramming, Unique Sink Orientations, PLCP, Regularisation

2

Dank Herzlichen Dank an Bernd Gärtner für die kompetente Betreuung,
die vielen interessanten Ideen und Anregungen, an Leo Rüst für die witzigen
gemeinsamen Experimente mit LP und PLCP, an Nadja für ihre Geduld,
und an meine Eltern dafür dass sie mir das Studium ermöglicht haben.

3

Contents

1 Quadratic Programming by Unique Sink Orientations 7
1.1 Introduction . 7
1.2 Unique sink orientations . 8
1.3 The Karush–Kuhn–Tucker conditions 8
1.4 Simple convex programming 9
1.5 QP-induced USO . 12
1.6 QP-induced USO: The sink 23

2 Perturbing Linear Programming 28
2.1 The effect of the perturbation on the coefficients of the power

series . 29
2.2 Choosing the right perturbation 32
2.3 Conclusion . 36

3 Various Results 37
3.1 ‘Regularisation’ of linear programming 37
3.2 On the relation between LP and symmetric PLCP 40
3.3 The USO solution is indeed the shortest one 42
3.4 Cutting off the power series 46

4 Implementation 48
4.1 Number of coefficients needed from the power series 49
4.2 Which USO are LP-induced? 50

References 54

A Duality of quadratic programs 55

B Source code 56

4

An Easy Introduction This thesis provides a new solving method for
convex quadratic optimisation problems. If this sounds a bit weird to you,
you may consider the following situation: Given a sheep and a cheetah not
harming each other, and L meters of fencing, we want to fence in a rectan-
gular meadow suiting best for our two animals. For the sheep, our aim is to
maximise the area of grass available. But for the cheetah, for security reasons
we would rather like to minimise the longest straight line in the meadow, so
that the cheetah may not gain too much speed to eventually jump over the
fence and run away. If we denote the length and width of the meadow by x1

and x2, we can formulate our two problems as follows:

Introduction 1 This thesis deals with a new solving method for convex
quadratic optimisation problems. If this sounds a bit weird to you, you may
consider the following situation: Given a sheep and a cheetah that do not
harm each other, and L meters of fencing, we want to fence in a rectangular
meadow suiting best for our two animals. Let x1 and x2 represent the length
and width of the meadow and suppose we want to use all fencing we have.
For the sheep, our aim is to maximise the area of grass available. But for
the cheetah, for security reasons we would rather like to minimise the longest
straight line in the meadow, so that the cheetah may not gain too much speed
to finally jump over the fence and run away. This means we would like to
find the solution to the following two problems:

For the sheep: For the cheetah:
maximise x1 x2 minimise x2

1 + x2
2

such that 2x1 + 2x2 = L such that 2x1 + 2x2 = L
x1, x2 ! 0 , x1, x2 ! 0 .

Optimisation problems of this form are called quadratic programs, since the
functions x1 x2 and x2

1 + x2
2 are quadratic. In this case there are of course

easy straightforward methods to solve the two problems (which by the way
have the same solution), but in practice the restrictions Furthermore

Introduction 2 Convex quadratic programming is a case of non-linear op-
timisation that has numerous applications in natural sciences, engineering,
mathematics and economics, as for example in regression analysis, signal
processing, image recognition, portfolio optimisation, control theory, filter
design, machine learning, operations research and geometry.

In the last decades this class of optimisation problems has received more
attention as several known concepts from linear programming have success-
fully been translated to convex quadratic programming (Simplex type meth-
ods, ellipsoid method, interior point methods) and given rise to improved
solution algorithms. In this thesis another interesting concept which has just
recently proved to be useful for linear programming [3], the concept of unique
sink orientations of the n-cube, is translated to convex quadratic program-
ming, and gives a new algorithm that is very fast in the RAM1 model. The

1Random Access Machine model, complexity is measured in number of elementary
operations on e.g. integers or real numbers, in contrast to the Turing Machine model.

5

Introduction 1 This thesis deals with a new solving method for convex
quadratic optimisation problems. If this sounds a bit weird to you, you may
consider the following situation: Given a sheep and a cheetah that do not
harm each other, and L meters of fencing, we want to fence in a rectangular
meadow suiting best for our two animals. Let x1 and x2 represent the length
and width of the meadow and suppose we want to use all fencing we have.
For the sheep, our aim is to maximise the area of grass available. But for
the cheetah, for security reasons we would rather like to minimise the longest
straight line in the meadow, so that the cheetah may not gain too much speed
to finally jump over the fence and run away. This means we would like to
find the solution to the following two problems:

For the sheep: For the cheetah:
maximise x1 x2 minimise x2

1 + x2
2

such that 2x1 + 2x2 = L such that 2x1 + 2x2 = L
x1, x2 ! 0 , x1, x2 ! 0 .

Optimisation problems of this form are called quadratic programs, since the
functions x1 x2 and x2

1 + x2
2 are quadratic. In this case there are of course

easy straightforward methods to solve the two problems (which by the way
have the same solution), but in practice the restrictions Furthermore

Introduction 2 Convex quadratic programming is a case of non-linear op-
timisation that has numerous applications in natural sciences, engineering,
mathematics and economics, as for example in regression analysis, signal
processing, image recognition, portfolio optimisation, control theory, filter
design, machine learning, operations research and geometry.

In the last decades this class of optimisation problems has received more
attention as several known concepts from linear programming have success-
fully been translated to convex quadratic programming (Simplex type meth-
ods, ellipsoid method, interior point methods) and given rise to improved
solution algorithms. In this thesis another interesting concept which has just
recently proved to be useful for linear programming [3], the concept of unique
sink orientations of the n-cube, is translated to convex quadratic program-
ming, and gives a new algorithm that is very fast in the RAM1 model. The

1Random Access Machine model, complexity is measured in number of elementary
operations on e.g. integers or real numbers, in contrast to the Turing Machine model.

5

Introduction 1 This thesis deals with a new solving method for convex
quadratic optimisation problems. If this sounds a bit weird to you, you may
consider the following situation: Given a sheep and a cheetah that do not
harm each other, and L meters of fencing, we want to fence in a rectangular
meadow suiting best for our two animals. Let x1 and x2 represent the length
and width of the meadow and suppose we want to use all fencing we have.
For the sheep, our aim is to maximise the area of grass available. But for
the cheetah, for security reasons we would rather like to minimise the longest
straight line in the meadow, so that the cheetah may not gain too much speed
to finally jump over the fence and run away. This means we would like to
find the solution to the following two problems:

For the sheep: For the cheetah:
maximise x1 x2 minimise x2

1 + x2
2

such that 2x1 + 2x2 = L such that 2x1 + 2x2 = L
x1, x2 ! 0 , x1, x2 ! 0 .

Optimisation problems of this form are called quadratic programs, since the
functions x1 x2 and x2

1 + x2
2 are quadratic. In this case there are of course

easy straightforward methods to solve the two problems (which by the way
have the same solution), but in practice the restrictions Furthermore

Introduction 2 Convex quadratic programming is a case of non-linear op-
timisation that has numerous applications in natural sciences, engineering,
mathematics and economics, as for example in regression analysis, signal
processing, image recognition, portfolio optimisation, control theory, filter
design, machine learning, operations research and geometry.

In the last decades this class of optimisation problems has received more
attention as several known concepts from linear programming have success-
fully been translated to convex quadratic programming (Simplex type meth-
ods, ellipsoid method, interior point methods) and given rise to improved
solution algorithms. In this thesis another interesting concept which has just
recently proved to be useful for linear programming [3], the concept of unique
sink orientations of the n-cube, is translated to convex quadratic program-
ming, and gives a new algorithm that is very fast in the RAM1 model. The

1Random Access Machine model, complexity is measured in number of elementary
operations on e.g. integers or real numbers, in contrast to the Turing Machine model.

5

Introduction 1 This thesis deals with a new solving method for convex
quadratic optimisation problems. If this sounds a bit weird to you, you may
consider the following situation: Given a sheep and a cheetah that do not
harm each other, and L meters of fencing, we want to fence in a rectangular
meadow suiting best for our two animals. Let x1 and x2 represent the length
and width of the meadow and suppose we want to use all fencing we have.
For the sheep, our aim is to maximise the area of grass available. But for
the cheetah, for security reasons we would rather like to minimise the longest
straight line in the meadow, so that the cheetah may not gain too much speed
to finally jump over the fence and run away. This means we would like to
find the solution to the following two problems:

For the sheep: For the cheetah:
maximise x1 x2 minimise x2

1 + x2
2

such that 2x1 + 2x2 = L such that 2x1 + 2x2 = L
x1, x2 ! 0 , x1, x2 ! 0 .

Optimisation problems of this form are called quadratic programs, since the
functions x1 x2 and x2

1 + x2
2 are quadratic. In this case there are of course

easy straightforward methods to solve the two problems (which by the way
have the same solution), but in practice the restrictions Furthermore

Introduction 2 Convex quadratic programming is a case of non-linear op-
timisation that has numerous applications in natural sciences, engineering,
mathematics and economics, as for example in regression analysis, signal
processing, image recognition, portfolio optimisation, control theory, filter
design, machine learning, operations research and geometry.

In the last decades this class of optimisation problems has received more
attention as several known concepts from linear programming have success-
fully been translated to convex quadratic programming (Simplex type meth-
ods, ellipsoid method, interior point methods) and given rise to improved
solution algorithms. In this thesis another interesting concept which has just
recently proved to be useful for linear programming [3], the concept of unique
sink orientations of the n-cube, is translated to convex quadratic program-
ming, and gives a new algorithm that is very fast in the RAM1 model. The

1Random Access Machine model, complexity is measured in number of elementary
operations on e.g. integers or real numbers, in contrast to the Turing Machine model.

5

Introduction 1 This thesis deals with a new solving method for convex
quadratic optimisation problems. If this sounds a bit weird to you, you may
consider the following situation: Given a sheep and a cheetah that do not
harm each other, and L meters of fencing, we want to fence in a rectangular
meadow suiting best for our two animals. Let x1 and x2 represent the length
and width of the meadow and suppose we want to use all fencing we have.
For the sheep, our aim is to maximise the area of grass available. But for
the cheetah, for security reasons we would rather like to minimise the longest
straight line in the meadow, so that the cheetah may not gain too much speed
to finally jump over the fence and run away. This means we would like to
find the solution to the following two problems:

For the sheep: For the cheetah:
maximise x1 x2 minimise x2

1 + x2
2

such that 2x1 + 2x2 = L such that 2x1 + 2x2 = L
x1, x2 ! 0 , x1, x2 ! 0 .

Optimisation problems of this form are called quadratic programs, since the
functions x1 x2 and x2

1 + x2
2 are quadratic. In this case there are of course

easy straightforward methods to solve the two problems (which by the way
have the same solution), but in practice the restrictions Furthermore

Introduction 2 Convex quadratic programming is a case of non-linear op-
timisation that has numerous applications in natural sciences, engineering,
mathematics and economics, as for example in regression analysis, signal
processing, image recognition, portfolio optimisation, control theory, filter
design, machine learning, operations research and geometry.

In the last decades this class of optimisation problems has received more
attention as several known concepts from linear programming have success-
fully been translated to convex quadratic programming (Simplex type meth-
ods, ellipsoid method, interior point methods) and given rise to improved
solution algorithms. In this thesis another interesting concept which has just
recently proved to be useful for linear programming [3], the concept of unique
sink orientations of the n-cube, is translated to convex quadratic program-
ming, and gives a new algorithm that is very fast in the RAM1 model. The

1Random Access Machine model, complexity is measured in number of elementary
operations on e.g. integers or real numbers, in contrast to the Turing Machine model.

5

Introduction 1 This thesis deals with a new solving method for convex
quadratic optimisation problems. If this sounds a bit weird to you, you may
consider the following situation: Given a sheep and a cheetah that do not
harm each other, and L meters of fencing, we want to fence in a rectangular
meadow suiting best for our two animals. Let x1 and x2 represent the length
and width of the meadow and suppose we want to use all fencing we have.
For the sheep, our aim is to maximise the area of grass available. But for
the cheetah, for security reasons we would rather like to minimise the longest
straight line in the meadow, so that the cheetah may not gain too much speed
to finally jump over the fence and run away. This means we would like to
find the solution to the following two problems:

For the sheep: For the cheetah:
maximise x1 x2 minimise x2

1 + x2
2

such that 2x1 + 2x2 = L such that 2x1 + 2x2 = L
x1, x2 ! 0 , x1, x2 ! 0 .

Optimisation problems of this form are called quadratic programs, since the
functions x1 x2 and x2

1 + x2
2 are quadratic. In this case there are of course

easy straightforward methods to solve the two problems (which by the way
have the same solution), but in practice the restrictions Furthermore

Introduction 2 Convex quadratic programming is a case of non-linear op-
timisation that has numerous applications in natural sciences, engineering,
mathematics and economics, as for example in regression analysis, signal
processing, image recognition, portfolio optimisation, control theory, filter
design, machine learning, operations research and geometry.

In the last decades this class of optimisation problems has received more
attention as several known concepts from linear programming have success-
fully been translated to convex quadratic programming (Simplex type meth-
ods, ellipsoid method, interior point methods) and given rise to improved
solution algorithms. In this thesis another interesting concept which has just
recently proved to be useful for linear programming [3], the concept of unique
sink orientations of the n-cube, is translated to convex quadratic program-
ming, and gives a new algorithm that is very fast in the RAM1 model. The

1Random Access Machine model, complexity is measured in number of elementary
operations on e.g. integers or real numbers, in contrast to the Turing Machine model.

5

Introduction 1 This thesis deals with a new solving method for convex
quadratic optimisation problems. If this sounds a bit weird to you, you may
consider the following situation: Given a sheep and a cheetah that do not
harm each other, and L meters of fencing, we want to fence in a rectangular
meadow suiting best for our two animals. Let x1 and x2 represent the length
and width of the meadow and suppose we want to use all fencing we have.
For the sheep, our aim is to maximise the area of grass available. But for
the cheetah, for security reasons we would rather like to minimise the longest
straight line in the meadow, so that the cheetah may not gain too much speed
to finally jump over the fence and run away. This means we would like to
find the solution to the following two problems:

For the sheep: For the cheetah:
maximise x1 x2 minimise x2

1 + x2
2

such that 2x1 + 2x2 = L such that 2x1 + 2x2 = L
x1, x2 ! 0 , x1, x2 ! 0 .

Optimisation problems of this form are called quadratic programs, since the
functions x1 x2 and x2

1 + x2
2 are quadratic. In this case there are of course

easy straightforward methods to solve the two problems (which by the way
have the same solution), but in practice the restrictions Furthermore

Introduction 2 Convex quadratic programming is a case of non-linear op-
timisation that has numerous applications in natural sciences, engineering,
mathematics and economics, as for example in regression analysis, signal
processing, image recognition, portfolio optimisation, control theory, filter
design, machine learning, operations research and geometry.

In the last decades this class of optimisation problems has received more
attention as several known concepts from linear programming have success-
fully been translated to convex quadratic programming (Simplex type meth-
ods, ellipsoid method, interior point methods) and given rise to improved
solution algorithms. In this thesis another interesting concept which has just
recently proved to be useful for linear programming [3], the concept of unique
sink orientations of the n-cube, is translated to convex quadratic program-
ming, and gives a new algorithm that is very fast in the RAM1 model. The

1Random Access Machine model, complexity is measured in number of elementary
operations on e.g. integers or real numbers, in contrast to the Turing Machine model.

5

Introduction 1 This thesis deals with a new solving method for convex
quadratic optimisation problems. If this sounds a bit weird to you, you may
consider the following situation: Given a sheep and a cheetah that do not
harm each other, and L meters of fencing, we want to fence in a rectangular
meadow suiting best for our two animals. Let x1 and x2 represent the length
and width of the meadow and suppose we want to use all fencing we have.
For the sheep, our aim is to maximise the area of grass available. But for
the cheetah, for security reasons we would rather like to minimise the longest
straight line in the meadow, so that the cheetah may not gain too much speed
to finally jump over the fence and run away. This means we would like to
find the solution to the following two problems:

For the sheep: For the cheetah:
maximise x1 x2 minimise x2

1 + x2
2

such that 2x1 + 2x2 = L such that 2x1 + 2x2 = L
x1, x2 ! 0 , x1, x2 ! 0 .

Optimisation problems of this form are called quadratic programs, since the
functions x1 x2 and x2

1 + x2
2 are quadratic. In this case there are of course

easy straightforward methods to solve the two problems (which by the way
have the same solution), but in practice the restrictions Furthermore

Introduction 2 Convex quadratic programming is a case of non-linear op-
timisation that has numerous applications in natural sciences, engineering,
mathematics and economics, as for example in regression analysis, signal
processing, image recognition, portfolio optimisation, control theory, filter
design, machine learning, operations research and geometry.

In the last decades this class of optimisation problems has received more
attention as several known concepts from linear programming have success-
fully been translated to convex quadratic programming (Simplex type meth-
ods, ellipsoid method, interior point methods) and given rise to improved
solution algorithms. In this thesis another interesting concept which has just
recently proved to be useful for linear programming [3], the concept of unique
sink orientations of the n-cube, is translated to convex quadratic program-
ming, and gives a new algorithm that is very fast in the RAM1 model. The

1Random Access Machine model, complexity is measured in number of elementary
operations on e.g. integers or real numbers, in contrast to the Turing Machine model.

5

maximise x1 x2 minimise x2
1 + x2

2

such that 2x1 + 2x2 = L such that 2x1 + 2x2 = L
x1, x2 > 0 , x1, x2 > 0 .

Optimisation problems of this form are called quadratic programs, since
the functions x1 x2 and x2

1 + x2
2 are quadratic. In the above slightly artificial

case there are several easy approaches that solve the two problems directly
(which by the way have the same solution), but in practice, there may be
much more than just one constraint that has to be satisfied, so more sophis-
ticated solution methods are needed. Furthermore we note that the second
of the two above problems is in fact a convex quadratic program, whereas the
first one is not, since the function x1 x2 is not convex.

The new solution method for convex quadratic programs that is explained
in this thesis works by jumping around—not on a meadow, but—on the
corners of the n-dimensional cube, where n is the number of variables we
have in our quadratic program.

5

Introduction Convex quadratic programming is a case of non-linear op-
timisation that has numerous applications in natural sciences, engineering,
mathematics and economics, as for example in regression analysis, signal
processing, image recognition, portfolio optimisation, control theory, filter
design, machine learning, operations research and geometry.

In the last decades this class of optimisation problems has received more
attention as several known concepts from linear programming have success-
fully been translated to convex quadratic programming (Simplex type meth-
ods, ellipsoid method, interior point methods) and given rise to improved
solution algorithms. In this thesis another interesting concept which has just
recently proved to be useful for linear programming [3], the concept of unique
sink orientations of the n-cube, is translated to convex quadratic program-
ming, and gives a new algorithm that is very fast in the RAM1 model. The
research for faster algorithms for LP as well as for convex QP is also mo-
tivated by the over thirty year old unsolved problem whether LP admits a
polynomial time algorithm in the RAM model (also called a strongly poly-
nomial algorithm).

In Section 2 of this thesis, a perturbation method for a linear program
is studied as a method to further speed up the solving algorithm by unique
sink orientations. We achieve a linear speed-up compared to the original
algorithm.

Section 3 provides deeper insight into the properties of the method and
the resulting cube-orientations, and gives a new proof that the LP solution
obtained by the USO approach is indeed the shortest optimal solution to
the LP. We also mention the connection to a problem very closely related
to LP and QP, the problem of symmetric P -matrix linear complementarity
problems. Furthermore, a regularisation method for LP is proposed.

In Section 4, a first implementation of the algorithm for linear program-
ming by unique sink orientations is realised to further study the behaviour
of the new algorithm and the properties of the resulting cube-orientations.

1Random Access Machine model, complexity is measured in number of elementary
operations on e.g. integers or real numbers, in contrast to the Turing Machine model.

6

1 Quadratic Programming by Unique Sink

Orientations

In this section, the reduction of linear programming to unique sink orienta-
tions from [3] is generalised to convex quadratic programming.

1.1 Introduction

Quadratic programming is the problem of minimising a quadratic function
subject to linear (in)equality constraints. Here we consider convex quadratic
programs of the form

(QP) min
1

2
xT Qx− cT x (1.1)

s.t. Ax = b

x > 0 ,

with Q ∈ Rn×n a positive semi-definite matrix, c ∈ Rn, A ∈ Rm×n and
b ∈ Rm. Note that any convex quadratic program can be converted to this
form by introducing additional (slack) variables. In addition, w.l.o.g., we
may assume that Q is symmetric (otherwise set Q′ := 1

2
(Q + QT)).

To solve the above quadratic program means to compute an optimal so-
lution x∗ if the problem is feasible and bounded, and to report infeasibility
or unboundedness otherwise.

In the following we will prove that the problem of solving a convex
quadratic program in n non-negative variables and m equality constraints in
a natural way defines a unique sink orientation (USO) of the n-dimensional
cube, with the unique sink of the USO corresponding to the solution of the
QP. The method is very different from simplex-type methods in many as-
pects: We obtain a canonical solution for every convex QP, with the solution
being independent of the initial conditions or the internal rule being used.
It’s also remarkable that our procedure obtains this canonical solution also
in the unbounded or even infeasible case, so there is no need for any pre-
processing steps (like phase one in the simplex method).

By using the fastest known deterministic sink-finding algorithm for gen-
eral USO, we obtain the currently fastest deterministic algorithm for convex
QP (and also for LP, see [3]) in the RAM model, for the central case n = 2m:

7

Theorem 1.1. Any convex QP with n = 2m variables can be solved in time

O (1.606n) = O (2.58m) .

Proof. The Fibonacci Seesaw algorithm by Szabó and Welzl [6] finds the sink
of a USO of the n-cube in time O (1.606n). In the following of the section we
will prove a reduction of convex QP to finding the sink of a USO.

1.2 Unique sink orientations

Definition 1.1. An orientation of the vertex-edge graph of the n-dimensional
cube is called unique sink orientation (USO) if every subgraph induced by a
non-empty cube face has a unique sink.

In particular, the cube has a unique global sink. The concept of unique
sink orientations has first been considered by Stickney and Watson in 1978
[5] as a model to solve linear complementarity problems, but has since then
proved to be useful for other problems, in particular the smallest enclos-
ing ball problem in geometry, and linear programming. Also, several results
about the combinatorial properties of these objects followed [2, 4, 6].

Szabó and Welzl found a deterministic algorithm—the Fibonacci Seesaw—
that finds the global sink of any n-cube USO by looking at less than 1.61n

vertices (more precisely, at the orientations of the incident edges) [6]. This
is the vertex evaluation model.

1.3 The Karush–Kuhn–Tucker conditions

Let us fix some notation first.
For x ∈ Rn and J ⊆ [n] := {1, . . . , n}, xJ is the |J |-dimensional vector

obtained from x by collecting all coordinates with subscript in J .
For A ∈ Rm×n, AJ ∈ Rm×|J | collects the columns of A with subscript in

J , and in a notation which we will use less frequently, AJ ∈ R|J |×n collects
the rows of A with subscript in J , for J ⊆ [m].

With 0 being the zero vector of the appropriate dimension, we also use

RJ := {x ∈ Rn | x[n]\J = 0}.

8

Now let f : Rn → R be a differentiable convex function with continuous
partial derivatives. For I ⊆ J ⊆ [n] we consider the convex programming
problem

CP(I, J) min f(x)
s.t. Ax = b

x ∈ RJ

xJ\I ≥ 0.

(1.2)

where A ∈ Rm×n and b ∈ Rm. The following is a specialisation of a very
general theorem to our scenario.

Theorem 1.2. x∗ ∈ Rn is an optimal solution to problem CP(I, J) if and
only if

(i) Ax∗ = b, x∗ ∈ RJ , x∗J\I ≥ 0, and

(ii) there exists λ ∈ Rm such that for all j ∈ J ,

∇f(x∗)j − λT Aj ≥ 0,

with equality if j ∈ I or x∗j > 0.

Here, ∇f(x∗) is the gradient of f at x∗ which by convention is an n-dimensional
row vector.

The entries of λ are called Karush–Kuhn–Tucker (KKT) multipliers. A
short proof of this theorem can be found in [3].

1.4 Simple convex programming

This short section recapitulates the important reduction of strictly convex
programming to unique sink orientations from [3]. Let us fix a strictly convex
function f and consider for I ⊆ J ⊆ [n] the problem

SCP(I, J) min f(x)
s.t. x ∈ RJ ,

xJ\I ≥ 0.
(1.3)

This is just the program CP(I, J) from the previous section, restricted to the
strictly convex case, and with A ∈ R0×n. We refer to this set-up as simple
convex programming (SCP).

9

Since f is strictly convex and SCP(I, J) is feasible, the program SCP(I, J)
has a unique solution x∗(I, J), for all pairs I ⊆ J . Applying Theorem 1.2,
we see that x∗ = x∗(I, J) if and only if we have primal feasibility

x∗[n]\J = 0, (1.4)

x∗J\I ≥ 0, (1.5)

along with dual feasibility

∇f(x∗)I = 0, (1.6)

∇f(x∗)J\I ≥ 0, (1.7)

and complementarity

∇f(x∗)jx
∗
j = 0, j ∈ J \ I. (1.8)

Let us focus on the case I = J for a moment. Conditions (1.5), (1.7) and
(1.8) are vacuous, so we get that x∗ = x∗(J, J) if and only if

x∗[n]\J = 0,

∇f(x∗)J = 0.
(1.9)

Towards the USO. Identifying the n-cube vertices with the sets J ⊆ [n],
we will derive the edge orientations from the vectors x∗(J, J). We still need
one preparatory

Lemma 1.1. For J ⊆ [n], j ∈ J and I := J \ {j}, the following two
statements are equivalent.

(i) x∗(J, J)j > 0.

(ii) ∇f(x∗(I, I))j < 0.

Proof. If x∗(J, J)j > 0, then x∗(J, J) is feasible and therefore optimal for
the more restricted problem SCP(I, J). On the other hand, x∗(J, J)j > 0
shows that x∗(J, J) 6= x∗(I, I). This means, we have x∗(I, J) 6= x∗(I, I),
the only possible reason being that (1.7) fails for x∗ = x∗(I, I). This shows
∇f(x∗(I, I))j < 0.

Conversely, ∇f(x∗(I, I))j < 0 implies x∗(I, J) 6= x∗(I, I), so x∗(I, J)j >
0. Complementarity yields ∇f(x∗(I, J))j = 0, so x∗(I, J) is also optimal
for the less restricted problem SCP(J, J) by (1.9). This yields x∗(J, J)j =
x∗(I, J)j > 0.

10

Here is the main result of this section.

Theorem 1.3. For J ⊆ [n], j ∈ J and I := J \ {j}, the edge orientations

I → J :⇔ x∗(J, J)j > 0 (⇔ ∇f(x∗(I, I))j < 0)

define a USO of the n-cube.

Proof. We have to show that every non-empty cube face has a unique sink.
In our interpretation of cube vertices as subsets J ⊆ [n], the faces can be
identified with set intervals of the form

[I, J] := {F ⊆ [n] | I ⊆ F ⊆ J}.

We claim that

S := I ∪ {j ∈ J | x∗(I, J)j > 0} (1.10)

is the desired sink of the face [I, J], I ⊆ J . First observe that by this defini-
tion of S, x∗ = x∗(I, J) satisfies

x∗[n]\S = 0, (1.11)

∇f(x∗)S = 0, (1.12)

by (1.6) and complementarity (1.8). It follows that x∗(I, J) = x∗(S, S), by
(1.9). Therefore,

x∗(S, S)j > 0, j ∈ S \ I, (1.13)

∇f(x∗(S, S))j ≥ 0, j ∈ J \ S, (1.14)

by (1.7). According to the definition of the orientation, S is a sink in [I, J].
Conversely, if S is any sink in [I, J], then the two previous inequalities

hold, so x∗(S, S) is feasible for SCP(I, J) since (1.11) and (1.13) imply (1.4)
and (1.5), and it is dual feasible since (1.12) and (1.14) imply (1.6) and (1.7).
Complementarity (1.8) follows from (1.11) and (1.12). Thus, x∗(S, S) =
x∗(I, J), where (1.13) forces S to coincide with the set defined in (1.10).

11

1.5 QP-induced USO

Given the convex quadratic program (QP) with n variables, we define for
any ε > 0 a quadratic function fε by

fε(x) := xT (AT A + εQ + ε2I)x− 2bT Ax− 2εcT x

= ‖Ax− b‖2 + 2ε(
1

2
xT Qx− cT x) + ε2‖x‖2 − bT b (1.15)

Here, I is the identity matrix of the appropriate dimension (n in this case).
Since Q is positive semi-definite, is follows that AT A + εQ + ε2I is positive
definite for all ε > 0, so fε(x) is a strictly convex function.

Let us denote by SCPε(I, J) the program (1.3) with function f = fε. We
are interested in the behavior for ε → 0. We expect that in the limit, the
program lexicographically minimises the triple(

‖Ax− b‖2 ,
1

2
xT Qx− 2cT x , ‖x‖2

)
.

In the feasible and bounded case, the solution x∗ε(∅, [n]) of SCPε(∅, [n]) should
therefore converge to the optimal QP solution of minimum norm. In the fol-
lowing we will render this claim more precisely.

In order to understand the USO induced by fε, we have to know the
values x∗ε(J, J). From (1.9) it follows that x∗ε(J, J) ∈ RJ is obtained as the
unique solution of the linear equation system

∇fε(x)T
J

2
= (AT

J AJ + εQJ
J + ε2I)xJ − AT

J b− εcJ = 0 (1.16)

with x ∈ RJ .

Where by writing AT
J , we mean (AJ)T . Now as also stated in [3], we see

that these induced USO “converge” in the following sense:

Lemma 1.2. Let
ε→ be the USO of the n-cube induced by fε according to

Theorem 1.3. Then there exists a USO → such that
ε→=→ for sufficiently

small ε.

This “limiting” USO is called the USO induced by the QP.

12

Proof. Using Cramer’s rule to compute the solution x∗ε(J, J)J of the system
(1.16), we see that the entries of all x∗ε(J, J)j are rational functions in ε. By

Theorem 1.3,
ε→ is determined by the signs of finitely many of these rational

functions.
Now, for any nonzero rational function r(ε), there is an open interval of

the form (0, δ) in which neither its numerator nor its denominator has any
zeros. In this interval, the sign of r(ε) is fixed. The lemma follows.

This also provides a way of computing edge orientations in the limiting
USO →: simply compute the rational function “responsible” for the orien-
tation in question and find the terms with the smallest ε-power in both the
numerator and the denominator. These determine the sign of the rational
function for ε → 0.

Nevertheless, since the limiting USO does not depend on ε, there must
be a way of avoiding computations involving ε. Our approach is to develop
x∗ε(J, J) into a power series, and this will also be crucial for understanding
the global sink of → in the next section.

A zoo of unconstrained programs. It will turn out that the coefficients
of the power series expansion are solutions to unconstrained strictly convex
quadratic programs (where unconstrained means that there are no inequali-
ties). All “animals” in the following list are unique optimal solutions of their
defining programs.

13

Definition 1.2. For J ⊆ [n], set

b̄(J) := argmin (b− y)T (b− y)
s.t. Ax = y x ∈ RJ ,

b(J) := argmin (b− y)T (b− y)
s.t. AT

J y = 0 ,

c̄(J) := argmin (c− x)T (c− x)

s.t.

(
AJ

QJ

)T

z = xJ z ∈ R2m,

g−1(J) := c(J) := argmin (c− x)T (c− x)

s.t.

(
A

Q

)
x = 0 x ∈ RJ ,

g0(J) := x(J) := argmin xT x

s.t.

(
AT

J A

QJ

)
x =

(
AT

J b

c̄(J)J + AT
J Aλ

)
x, λ ∈ RJ ,

g1(J) := t(J) := argmin xT x

s.t.

(
AT

J A

QJ

)
x =

(
−QJx(J) + c̄(J)J

−x(J)J + AT
J Aλ

)
x, λ ∈ RJ ,

and for i > 2, we recursively define

gi(J) := argmin xT x

s.t.

(
AT

J A

QJ

)
x =

(
−QJgi−1(J)− gi−2(J)J

−gi−1(J)J + AT
J Aλ

)
x, λ ∈ RJ .

If not indicated otherwise, x ranges over Rn and y over Rm.

Note that the first four programs are easily seen to have feasible solutions
and, since the objective functions are strictly convex, the optimal solutions
are unique.

To get an intuition what these values are, let us consider for γ ∈ Rn and
β ∈ Rm the (unconstrained, and therefore quite boring) quadratic program

QP (J) min 1
2
xT Qx− γT x

s.t. Ax = β, x ∈ RJ ,
(1.17)

14

along with its dual

QP4(J) max − 1
2
xT Qx− yT β

s.t. QT
J x + AT

J y = γJ , x ∈ RJ ,
(1.18)

The vector β = b̄(J) is the vector closest to b such that QP (J) is feasible.
Dually, γ = c̄(J) is the vector closest to c such that QP4(J) is feasible. b(J)
is the projection of b onto the kernel of AT

J , while c(J) is the projection of c
onto the kernel of

(
AJ

QJ

)
.

First, we would like to prove feasibility of all programs of the “zoo”. To
do so, we are required to bring AT A and Q into a nicer form than they have
in general. We will also use this special form later in this section to prove
that our defined “animals” are indeed the coefficients of the desired power
series of x∗ε(J, J).

A “simultaneously diagonal form” for AT
J AJ and QJ

J . For any A,
the matrix AT

J AJ is symmetric. We choose coordinates such that AT
J AJ

is diagonal, i.e. let T be an orthogonal transformation matrix such that
T AT

J AJ T T = diag(a1, . . . , al, 0, . . . , 0) with all ai being nonzero, T T T = I.
Furthermore, we would like to have QJ

J “as diagonal as possible” at the
same time, but we have to be careful about which of the coordinates we are
still allowed to change, without destroying the nice form of A. What can

be done is the following: For T QJ
J T T =

(
Q1 Qa

QT
a Qb

)
, Q1 ∈ Rl×l, let U be

such that U Qb UT = diag(ql+1, . . . , qm, 0, . . . , 0) with the qi being nonzero;
UT U = I. This is possible because Q, and thus also Qb, is symmetric.

We now define a new transformation P :=

(
Il×l 0
0 U

)
T , and observe

that this P still diagonalises AT
J AJ in exactly the same way, and that P T P =

I. (geometrically we have just chosen another basis for the kernel of AT
J AJ).

By our choice of P we have:

P QJ
J P T =


Q1 Q2 Q3

QT
2

ql+1...
qm

0

QT
3 0 0...0

 (1.19)

15

Now since this matrix is still symmetric and positive semi-definite, it
further follows that Q3 = 0. This is by the small Lemma 1.3 following here:

Lemma 1.3. For Q a symmetric, positive semi-definite matrix

Q =

(
R S
ST 0

)
⇒ Q =

(
R 0
0 0

)
Proof. Assume R ∈ Rv×v, S ∈ Rv×w. Let i ∈ [v], j ∈ [w]. We make use of Q
being positive semi-definite: Define x : xi = 1, xv+j = − Rii

2Sij
+ 1 and xk = 0

otherwise, to obtain xT Qx = 2Sij > 0.
Set z : zi = 1, zv+j = − Rii

2Sij
− 1 and zk = 0 otherwise, to obtain zT Qz =

−2Sij > 0. Both inequalities together imply Sij = 0. The claim follows.

We finally have the following two equalities. This is what we will call the
“simultaneous diagonal form”:

P AT
J AJ P T =


a1...

al

0

0 0...0

 =: A′ (1.20)

P QJ
J P T =


Q1 Q2 0

QT
2

ql+1...
qm

0

0 0 0...0

 =: Q′ (1.21)

We will now make use of this special form to prove the following

Lemma 1.4. All the defining programs for the gi(J), i > −1, are feasible,
and thus well-defined.

Proof. To prove feasibility of the problems for the gi(J), we look at the con-
straints in the new coordinates we proposed in the paragraph above.

First we would like to prove feasibility for the defining problem for x(J).
In the new coordinates, x′(J) = P x(J) and λ′ = P λ, the constraints for
x(J) are of the following form:

A′x′(J) = PAT
J b

Q′x′(J) = P c̄(J)J + A′λ′ (1.22)

16

Let b′ ∈ R|J | such that PAT
J b = A′b′ 2 and let P c̄(J)J = A′µ′ + Q′ν ′ 3. Now

the constraints are equivalent to the following equations:

A′x′(J) = A′b′

Q′x′(J)− A′λ′ = Q′ν ′ + A′µ′ (1.23)

To see feasibility we essentially do a top-down insertion. By the form of
A′, the upper equation will uniquely define x′(J)k in the coordinates 1 6 k 6
l. Next we satisfy the rows l < k 6 m of the lower equation by choosing
suitable x′(J)k, l < k 6 m. This is possible as Q′ has “diagonal form” in
these coordinates, and the qk are non-zero for l < k 6 m.

Finally it remains to get the equality for the rows 1 6 k 6 l of the lower
equation, but this is now easy by just choosing an appropriate λ (remember
ak 6= 0). Note that this choice of λ leaves rows l < k 6 n untouched since A′

is zero in these rows.
This proves feasibility for the defining problem for x′(J), and thus also

for x(J).

For the higher gi(J) we follow the same reasoning, with the difference
that here, feasibility of the upper equation for gi(J) directly follows from the
lower equation of the preceding program for gi−1(J).

In the lower equation we analogously use that, from the KKT conditions
for the preceding defining program, gi−1(J) = AT

J µ + QJ
Jν for some µ and ν.

Observe that, if all the defining programs for the gi(J) are feasible, the
gi(J) are indeed well-defined due to strict convexity.

Note that for the case of linear programming (where Q = 0), we do not
need this complicated “diagonal” form reasoning at all, since for LP, every
lower equation follows automatically from the KKT conditions for the pre-
ceding defining problem.

The following technical lemma will explain the meaning of some of the
“zoo animals” a bit more precisely. We will make use of these properties at
different positions later in the section.

2this is possible since AT
J AJx = AT

J b always has a solution for x.
3Check that the KKT conditions for the defining program for c(J) imply c̄(J) = AT

J µ+
QJ

Jν. Thus we can write P c̄(J)J = A′µ′ + Q′ν′.

17

Lemma 1.5. For all J ⊆ [n], the following holds:

(i) b = b̄(J) + b(J) and c = c̄(J) + c(J).

(ii) b̄(J)T b(J) = c̄(J)T c(J) = 0.

(iii) If b(J) 6= 0, then bT b(J) > 0, and if c(J) 6= 0, then cT c(J) > 0.

(iv) x(J) has the following alternative definition:

x(J) = argmin xT x

s.t.

(
A

QJ

)
x =

(
b̄(J)

c̄(J)J + AT
J Aλ

)
x, λ ∈ RJ .

Proof. (i) We only give the argument for b here, the one for c is similar. The
Karush–Kuhn–Tucker conditions for the program defining b̄(J) restricted to
(xJ , y) (Theorem 1.2) show that

AJx∗ = b̄(J),

(0T , 2(b̄(J)− b)) = λT (AJ ,−I), (1.24)

for some x∗ ∈ RJ , λ ∈ Rm. Set y∗ = λ/2. It follows that y∗ = b − b̄(J) and
AT

J y∗ = 0. Moreover, with µ := −2x∗, we have 2(y∗−b)T = −2b̄(J) = µT AT
J .

This means that y∗ and µ satisfy the KKT conditions for the program defining
b(J). Then b(J) = y∗ = b− b̄(J) follows.

Geometrically, b̄(J) is the projection of b onto the column space of AJ ,
while b(J) is the projection of b onto the orthogonal complement of the col-
umn space.

(ii) The KKT conditions for the defining program for b(J), together with
(i), imply (b − b(J))T

J = b̄(J)T
J = λAJ , so by definition of b(J) we get

b̄(J)T
J b(J)J = λAJb(J)J = 0, thus b̄(J)T b(J) = 0.

The argument for c is the same, but is still given here for completeness:
The KKT conditions for c(J), together with (i), imply c̄(J)T

J = λ
(

AJ

QJ

)
, so by

definition of c(J) we get c̄(J)T
J c(J)J = λ

(
AJ

QJ

)
c(J)J = 0, thus c̄(J)T c(J) = 0.

(iii) By (i) we have bT b(J) = (b̄(J)T + b(J)T)b(J). And by part (ii) of
this lemma, this equals to b(J)T b(J) which is positive if and only if b(J) 6= 0.
The argument for c is the same.

18

Here is an alternative proof without using (i) and (ii): b(J) 6= 0, optimal-
ity of b(J) under a strictly convex function yields

(b− b(J))T (b− b(J)) < (b− 0)T (b− 0) = bT b.

The inequality 2bT b(J) > b(J)T b(J) ≥ 0 follows.

(iv) In proving AT
J y∗ = 0 in (i), we have shown that AT

J b̄(J) = AT
J b. Since

any feasible linear system Mx = q is equivalent to MT Mx = MT q,4 we know
that the system AJxJ = b̄(J) can be replaced by AT

J AJxJ = AT
J b̄(J) = AT

J b.
The claim follows.

The power series expansion. The following theorem proves that the
gi(J) we defined above are indeed the coefficients of the power series expan-
sion of x∗ε(J, J).

Theorem 1.4 (Convergence Theorem). Let J ⊆ [n]. Then for any k > 0,

x∗ε(J, J) =
k∑

i=−1

εigi(J) + O(εk+1),

where the big-O notation refers to the asymptotic behavior for ε → 0.

Proof. We define remainder terms r
(k)
ε (J) ∈ RJ by:

r(k)
ε (J) := x∗(J, J)−

k∑
i=−1

gi(J)εi (1.25)

In order to prove the theorem, we have to show that r
(k)
ε (J) ∈ O(εk+1)

for any k > 0.

4We need to show that MT Mx = MT q implies Mx = q. Take any x′ such that Mx′ =
q. Then we get MT Mx′ = MT q and MT M(x′ − x) = 0. Also, (x′ − x)T MT M(x′ − x) =
‖M(x′ − x)‖2 = 0 and M(x′ − x) = 0 follows; hence Mx = Mx′ = q.

19

We plug in the definition of x∗(J, J) (see equation 1.16) into (1.25) to

obtain the following equation for r
(k)
ε (J) ∈ RJ :

(AT
J A + εQJ + ε2I) r(k)

ε (J) = (AT
J A + εQJ + ε2I)

(
x∗(J, J)−

k∑
i=−1

gi(J)εi

)
= AT

J b + εc

−(AT
J A + εQJ + ε2I)

(
k∑

i=−1

gi(J)εi

)
Now to evaluate the right side, we group all terms with the same power in

ε. We see that all terms except the last two cancel out, as they exactly have
the form of the constraints from the defining programs of the gi(J), i > −1:

=

(−AT
J Ac(J)) ε−1

(−AT
J Ax(J) −QJc(J) +AT

J b) ε0

(−AT
J At(J) −QJx(J) +cJ − c(J)J) ε1

...
...

...
...

(−AT
J Agk(J) −QJgk−1(J) −gk−2(J)J) εk

(−QJgk(J) −gk−1(J)J) εk+1

(−gk(J)J) εk+2

=
(
−QJgk(J)− gk−1(J)J

)
εk+1 − gk(J)Jεk+2

= εk+1
(
AT

J Agk+1(J)− εgk(J)J

)
(1.26)

Where to obtain the last equality we again used the definition of gk+1(J).
Note that in doing this calculation we assumed k > 1, but you may easily
check that the resulting identity also holds for the case k = 0.

We now choose coordinates such that AT
J AJ is diagonal, and QJ

J is “as
diagonal as possible”, as we described in the corresponding paragraph above
(remember A′ = P AT

J AJ P T and Q′ = P QJ
J P T from equations 1.20 and

1.21).

In the new coordinates, r
′(k)
ε := P r

(k)
ε (J)J and g′k := P gk(J)J , the equa-

tion (1.26) we obtained for r
(k)
ε (J) is of the following form:

(A′ + εQ′ + ε2I)
r

′(k)
ε

εk+1
= A′g′k+1 − εg′k (1.27)

20

Observe that A′g′k+1 ∈ R[l], and by the definition of gk+2(J) we also know
that g′k = A′g′k+2 +Q′g′k+1, thus g′k ∈ R[m]. This means the defining equations

for r
′(k)
ε

εk+1 all have the desired form for the following Lemma 1.6 which finally

gives us r
′(k)
ε

εk+1 ∈ O(1) and thus r
(k)
ε (J) ∈ O(εk+1).

Note: a similar argument works to extend the theorem to the case k = −1.

Lemma 1.6. v ∈ R[l] and w ∈ R[m]. Let r ∈ Rn be the solution of the
following matrix equation:


a1...
al

0

0 0...0

+ ε


Q1 Q2 0

QT
2

ql+1...
qm

0

0 0 0...0

+ ε2I

 r = v + εw .

Then r ∈ O(1).

Proof. Suppose the claim is wrong, thus there is an i with ri /∈ O(1). Then
ri ∈ Ω(ε−1) by Lemma 1.7. Now let i be s.t. ri ∈ Ω(εk) with k 6 −1 minimal.

We distinguish 3 cases:

Case 1: 1 6 i 6 l: the corresponding line in the matrix equation is:

(ai + ε2)ri + ε(Q1 Q2 0)i r = vi + εwi (1.28)

Then ri ∈ Ω(εk) implies existence of j s.t. (ε(Q1 Q2 0) r)j ∈ Ω(εk) and thus
rj ∈ Ω(εk−1), which contradicts the choice of i.

Case 2: l + 1 6 i 6 m: the corresponding line in the matrix equation is:

(qi + ε)ri + (QT
2 0 0)i−l r = wi (1.29)

Then ri ∈ Ω(εk) implies existence of j s.t. ((QT
2 0 0)r)j ∈ Ω(εk) and thus we

have j 6 l with rj ∈ Ω(εk), we now proceed exactly as in case 1 to obtain a
contradiction.

Case 3: m + 1 6 i 6 n: the corresponding line in the matrix equation is:

ri = 0 (1.30)

21

Which directly contradicts our assumption.

Lemma 1.7. Let f be a rational function in ε, let k ∈ N, k 6 0. Then

f /∈ O(εk) ⇒ f ∈ Ω(εk−1)

with O and Ω referring to ε → 0.

Proof. We factorise both numerator and denominator of f into their unique
irreducible representation (they are polynomials over R), and look at the
resulting unique monomial in ε:
f(ε) = εi g(ε), i ∈ N, with g(ε) → z 6= 0 as ε → 0.
So f /∈ O(εk) ⇒ f ∈ Ω(εk−1).

The convergence theorem shows that we can read off the edge orientation
J \ {j} → J in the LP-induced USO from the first nonzero coefficient in the
power series expansion of x∗ε(J, J). The following corollary is taken from [3]:

Corollary 1.8. Let J ⊆ [n], j ∈ J , and set I := J \{j}. Furthermore, define

i(J, j) := min{i ≥ −1 | gi(J)j 6= 0}.

Then i(J, j) = ∞ or i(J, j) ≤ 2|J | − 1, and the LP-induced USO → derived
in Lemma 1.2 induces the edge orientation

I → J ⇔ gi(J,j)(J)j > 0, (1.31)

where we set g∞(J)j := 0.

Since our power series expansion also induces an expansion of∇f(x∗ε(J, J))
(responsible for the “upward” edges at J for small ε), we can compute the
orientations of all edges incident to a given vertex J in the LP-induced USO
by solving at most 2|J |+2 unconstrained quadratic programs, and hopefully
much less in most cases; this is the vertex evaluation oracle. By the Karush–
Kuhn–Tucker conditions, this is easy and reduces to solving linear equation
systems.

Proof. We have
I

ε→ J ⇔ x∗ε(J, J)j > 0,

see the definition of the orientation in Theorem 1.3. Then, according to
the previous theorem, the first nonzero value gi(J)j determines the sign of

22

x∗ε(J, J)j for sufficiently small ε, and this is the sign that defines the orienta-
tion I → J in the limiting USO.

For the bound on i(J, j) in the finite case, recall that x∗ε(J, J)j is a rational
function, and if it is nonzero, the numerator contains a monomial εi with
i ≤ 2|J | − 1 (this is again Cramer’s rule, applied to the system (1.16). It
follows that

|x∗ε(J, J)j| = Ω
(
ε2|J |−1

)
for ε → 0, and the previous theorem implies that i(J, j) ≤ 2|J | − 1.

On the other hand, i(J, j) = ∞ implies x∗ε(J, J)j = 0, so (1.31) gives the
right orientation also in this case.

1.6 QP-induced USO: The sink

Definition 1.3. For all J ⊆ [n] we define

y(J) := At(J) (1.32)

Note that by feasibility of t(J), this implies AT
J y(J) + QJx(J) = c̄(J)J .

Let S ⊆ [n] be the sink of the QP-induced USO →. From Theorem 1.4
we know that

x∗ε(S, S) =
c(S)

ε
+ x(S) + εt(S) + O(ε2), (1.33)

which implies

∇f(x∗ε(S, S))T /2 = AT (b̄(S)− b) (1.34)

+ ε(AT y(S) + Qx(S)− c̄(S))

+ O(ε2),

using (1.16), Ac(S) = 0, Qc(S) = 0, Ax(S) = b̄(S) and At(S) = y(S), see
definitions, and c = c(S) + c̄(S).

For sufficiently small ε, S is also the sink in
ε→, so x∗ε(S, S) = x∗ε(∅, [n]).

Using the optimality criteria (1.5), (1.7) and (1.8), we deduce

x∗ε(S, S) > 0, (1.35)

∇f(x∗ε(S, S)) > 0, (1.36)

∇f(x∗ε(S, S))j x∗ε(S, S)j = 0, j ∈ [n]. (1.37)

This implies the following

23

Theorem 1.5. Consider the quadratic program

min 1
2
xT Qx− c̄(S)T x

s.t. Ax = b̄(S)
x > 0,

(1.38)

along with its dual
max −1

2
xT Qx− yT b̄(S)

s.t. Qx + AT y > c̄(S).
(1.39)

Then, for sufficiently small ε > 0, the following statements hold:

(i) x(S) + c(S)/ε is optimal for (3.20).

(ii) (x(S), y(S)− b(S)/ε) is optimal for (3.21).

Proof. Putting together (1.33) and (1.35) shows that x(S) + c(S)/ε > 0 for
sufficiently small ε > 0, and feasibility for (3.20) follows from the definitions
of c(S), x(S). On the other hand, combining (1.34) and (1.36) implies that
either −AT b(S) > 0 and AT y(S) + Qx(S) > c̄(S), or −AT b(S) > 0 (remem-
ber b(S) = b− b̄(S)). In both cases (x(S), y(S)−b(S)/ε) is feasible for (3.21),
for sufficiently small ε.

To prove optimality we compare the two objectives and prove that they
are equal:

1
2

(
x(S) + c(S)

ε

)T

Q
(
x(S) + c(S)

ε

)
−c̄(S)T

(
x(S) +

c(S)

ε

)
= 1

2
x(S)T Qx(S) −c̄(S)T x(S)

= 1
2
x(S)T Qx(S) −c̄(S)T

Sx(S)S

= 1
2
x(S)T Qx(S) −(AT

Sy(S) + QSx(S))T x(S)S

= −1
2
x(S)T Qx(S) −y(S)T Ax(S)

= −1
2
x(S)T Qx(S) −y(S)T b̄(S)

= −1
2
x(S)T Qx(S) −

(
y(S)− b(S)

ε

)T

b̄(S) (1.40)

where we used Qc(S) = 0, c̄(S)T c(S) = 05 , b(S)T b̄(S) = 0 and AT
Sy(S) +

QSx(S) = c̄(S)S, x(S) ∈ RS.
So optimality of (i) and (ii) follows from weak duality.

5From technical Lemma 1.5 (ii).

24

Note that this calculation also proves strong duality for feasible and
bounded QP and LP, by using weak duality.

We have shown that the sink S of the QP-induced USO gives us a primal-
dual pair of optimal solutions to a modified QP (3.20). Here is what we can
deduce about the original QP, our primary object of interest.

In the following, an unbounded ray for a QP is a half-line whose tail (ev-
erything except some initial segment) is feasible, and on which the objective
function is unbounded.

Theorem 1.6. Let S be the sink of the USO induced by the QP

(QP) min 1
2
xT Qx− cT x

s.t. Ax = b
x > 0.

(1.41)

(i) If b̄(S) 6= b, the QP (1.41) is infeasible. Equivalently, the QP

min 1
2
xT Qx− c̄(S)T x

s.t. Ax = b
x > 0

is infeasible, and this is witnessed by the fact that

{
(

x(S), y(S)− b(S)

ε

)
| ε > 0}

is an unbounded ray of the dual problem

max −1
2
xT Qx− bT y

s.t. Qx + AT y > c̄(S).

(ii) If b̄(S) = b and c̄(S) 6= c, the QP (1.41) is feasible but unbounded, and
this is witnessed by the fact that

{x(S) +
c(S)

ε
| ε > 0}

is an unbounded ray of (1.41).

(iii) If b̄(S) = b and c̄(S) = c, then x(S) and (x(S), y(S)) is a pair of primal
and dual optimal solutions to the QP (1.41).

25

Proof. By weak duality, the existence of a dual unbounded ray implies in-
feasibility of the primal problem, so in order to show (i) and (ii), it remains
to prove that the given rays are indeed unbounded. But this follows from
cT c(S) > 0 and bT b(S) > 0, see technical lemma 1.5(iii). Property (iii)
is a corollary of the previous theorem, under b(S) = b − b̄(S) = 0 and
c(S) = c− c̄(S) = 0.

We remark that the quadratic programs (3.20) and (3.21) can also be
defined without reference to the sink S. The following lemma proves this
claim, taking into account that AT (b̄(S)− b) > 0 and c(S) > 0:

Lemma 1.9. With S the sink of the QP-induced USO, we have

b̄(S) = argmin (b− y)T (b− y)
s.t. Ax = y

x > 0

and
c̄(S) = argmin (c− x)T (c− x)

s.t.
(

A
Q

)T
y > x.

Proof. We see that obviously both newly defined programs are feasible and
thus well-defined. Lets denote the values of the new programs by b̃(S) and
c̃(S) and write the conditions as equalities with all variables on the right
hand side (we introduce a new ‘slack’ variable z):

b̃(S) = argmin (b− y)T (b− y)

s.t. (A, −I)

(
x

y

)
= 0,

x > 0,

c̃(S) = argmin (c− x)T (c− x)

s.t.
(
−I,

(
A
Q

)T
, −I

)x
y
z

 = 0,

z > 0.

Consider the KKT conditions for the first new defining program:

0 > AT λ (1.42)

−2(b− b̃(S)) = −Iλ (1.43)

26

we see that these conditions are satisfied for b̃(S) := b̄(S), because of our
additional inequality AT (b̄(S) − b) > 0 that holds at the sink S. Thus the
optimal solution to the second program is indeed b̄(S).

For the second new defining program, we proceed similarly: The KKT
conditions for c̃(S),

−2(c− c̃(S)) = −Iλ (1.44)

0 =

(
A

Q

)
λ (1.45)

0 > −Iλ (1.46)

are also satisfied for c̃(S) := c̄(S), because of our additional inequality c −
c̄(S) = c(J) > 0 that holds at the sink S, and since

(
A
Q

)
c(S) = 0 by definition.

So the optimal solution to the new program is indeed c̄(S).

This lemma tells us the real meaning of the strange looking values b̄(S)
and c̄(S), and also motivates the modification of our QP as in (3.20) and
(3.21): b̄(S) is the closest replacement for b which makes the original QP
feasible, while c̄(S) is the closest replacement for c which makes the dual
problem feasible. In this sense, the USO approach solves the feasible and
bounded QP “closest” to the original one.

27

2 Perturbing Linear Programming

In this section we consider the unique sink orientations approach to linear
programming

(LP) max cT x
s.t. Ax = b

x ≥ 0,
(2.1)

with c ∈ Rn, A ∈ Rm×n and b ∈ Rm. The reduction of LP to a unique sink
orientation of the n-cube is described in [3], and of course also in the previous
section, if we just set the quadratic part Q to be the zero-matrix.

Here we show that perturbing the objective function vector c to

c′ = c + AT p, p ∈ Rm (2.2)

can be very helpful to speed up the calculation of the edge orientations of a
LP-induced USO, which realizes an idea proposed in [3].

The motivation of altering the LP in this way lies in the easy connection
between the modified LP and the unchanged one: For any feasible point x,
the new objective value is c′T x = cT x+pT Ax = cT x+pT b, so it’s only shifted
by a fixed constant, independent of x. Thus any optimal solution to the new
problem will automatically be an optimal solution to the old problem and
vice versa.

We show that with p chosen randomly according to a suitable distribution
over Rm, ties that may occur due to the power series expansion are broken
very early. We will show that already the third coefficient of the power series
expansion, t(J), can be made non-zero in every coordinate, with probability
1.

As we will use it frequently in this section, we recall the Karush–Kuhn–
Tucker conditions (Theorem 1.2) from the previous section for a convex func-
tion f in the simple case without any non-negativity constraints:

Theorem 2.1 (KKT Conditions). x∗ ∈ Rn is an optimal solution to the
problem

min f(x)
s.t. Ax = b

28

if and only if
Ax∗ = b and there exists λ ∈ Rm such that ∇f(x∗)T = AT λ.

Now what is the effect of the perturbation on x∗(J, J) and its power series?
We denote the new coefficients arising from the new objective function vector
by c′(J), x′(J), y′(J) and t′(J). You might want to recheck the definitions of
these coefficients in [3], or directly in the previous section (set Q = 0). For
completeness we repeat the definition here again:

Definition 2.1. For J ⊆ [n], set

b̄(J) := argmin (b− y)T (b− y) c̄(J) := argmin (c− x)T (c− x)
s.t. Ax = y s.t. AT

J y = xJ

x ∈ RJ

b(J) := argmin (b− y)T (b− y) c(J) := argmin (c− x)T (c− x)
s.t. AT

J y = 0 s.t. Ax = 0
x ∈ RJ

x(J) := argmin xT x y(J) := argmin yT y
s.t. Ax = b̄(J) s.t. AT

J y = c̄(J)J

x ∈ RJ

t(J) := argmin xT x
s.t. Ax = y(J)

x ∈ RJ

If not indicated otherwise, all x range over Rn and all y over Rm.

2.1 The effect of the perturbation on the coefficients
of the power series

Lemma 2.1. For any J ⊆ [n] it holds that

(i) c′(J) = c(J)

(ii) c̄ ′(J) = c̄(J) + AT p

(iii) x′(J) = x(J)

29

Proof. (i) The KKT Theorem applied to the defining program for c′(J) gives

2 (c′(J)J − c′J) = AT
J λ for some λ

⇔ 2 (c′(J)J − cJ) = AT
J (λ + 2p).

But this means that c′(J) satisfies the KKT conditions for the original defin-
ing program for c(J), and since the solutions are unique we must have that
c′(J) = c(J).
(ii) To prove the second equation we use c′ = c′(J) + c̄ ′(J) by our preceding
technical Lemma, and plug in the first result.
(iii) The third equation is clear since the definition of x′(J) does not depend
on c.

In the following we describe the effect of the perturbation to y(J) and
t(J). For the proofs of the two results we need the following small facts from
linear algebra:

Lemma 2.2. Let M be any matrix. Then

(i) Ker(MT M) = Ker(M)

(ii) Im(MT M) = Im(MT)

(iii) Ker(MT) ∩ Im(M) = {0} .

Proof. (i) Obviously Mx = 0 ⇒ MT Mx = 0. On the other hand MT Mx =
0 implies 0 = xT MT Mx = ‖Mx‖2, so Mx = 0.

(ii) x = MT Mλ implies x = MT λ′. For the other direction, suppose
x = MT λ and consider the unique value argmin zT z s.t. MT z = MT λ.
The KKT Theorem 2.1 for optimality of z implies z = Mµ for some µ, thus
x = MT λ = MT Mµ ∈ Im(MT M).

(iii) Let x ∈ Ker(MT)∩ Im(M). Then x = Mλ for some λ, and MT x =
MT Mλ = 0. Multiplying this by λT yields 0 = λT MT Mλ = ‖Mλ‖2 = ‖x‖2,
so x = 0.

Lemma 2.3. For any J ⊆ [n],

y′(J) = y(J) + p̄(J)

with p̄(J) being the projection of p onto the image of AJ , i.e.

p̄(J) = argmin (p− y)T (p− y) (2.3)

Ax = y , x ∈ RJ

30

Proof. We see that the defining program for p̄(J) is obviously feasible, and
p̄(J) is thus well-defined. Next we show that AT

J p = AT
J p̄(J). The KKT

conditions for the defining program for p̄(J), restricted to (xJ , y), state:(
0

−2(p−p̄(J))

)
=
(

AT
J

−I

)
λ. This implies λ

2
= p − p̄(J), AT

J (p − p̄(J)) = 0 and

thus AT
J p = AT

J p̄(J).
(Note that this fact is not really a surprise since the definition of p̄(J) is
structurally identical to the one of b̄(J) which we used earlier, as in the proof
of Lemma 1.5.)

We now make use of c̄ ′(J) = c̄(J) + AT p from the previous Lemma 2.1.
From the definition of y′(J), y(J) we have

AT
J y(J) = c̄(J)J

AT
J y′(J) = c̄(J)J + AT

J p .

Subtracting these two equations, and taking into account that AT
J p = AT

J p̄(J),
gives

y′(J)− y(J)− p̄(J) ∈ Ker(AT
J) . (2.4)

Now by definition p̄(J) ∈ Im(AJ), and by the KKT conditions for the defin-
ing programs for y′(J), y(J) we also know that y′(J), y(J) ∈ Im(AJ), so

y′(J)− y(J)− p̄(J) ∈ Im(AJ) . (2.5)

From Ker(AT
J) ∩ Im(AJ) = {0} we get y′(J) = y(J) + p̄(J).

The following lemma characterises the effect of the perturbation on t(J):

Lemma 2.4. For any J ⊆ [n],

t′(J) = t(J) + ¯̄p(J)

with

¯̄p(J) = argmin xT x (2.6)

Ax = p̄(J) , x ∈ RJ

or in other words, ¯̄p(J) being the shortest of all optimal vectors x appearing
in the defining program for p̄(J).

31

Proof. Feasibility of the defining program for ¯̄p(J) follows from feasibility of
p̄(J), i.e. because p̄(J) = Ax for some x ∈ RJ . So ¯̄p(J) is well-defined.

Now by plugging the previous Lemma into the definitions of t′(J), t(J)
we get

AJ t(J)J = y(J)

AJ t′(J)J = y(J) + p̄(J) = y(J) + AJ ¯̄p(J)J ,

the last equality holding by definition of ¯̄p(J). Subtracting these two equa-
tions gives

t′(J)J − t(J)J − ¯̄p(J)J ∈ Ker(AJ) . (2.7)

Now the KKT conditions for the defining programs of t(J), t′(J) and ¯̄p(J)
are all of the same form; they state t(J)J , t′(J)J and ¯̄p(J)J ∈ Im(AT

J) , so

t′(J)J − t(J)J − ¯̄p(J)J ∈ Im(AT
J) . (2.8)

So from Ker(AJ) ∩ Im(AT
J) = {0} we get t′(J) = t(J) + ¯̄p(J).

2.2 Choosing the right perturbation

Now as we know the effect of the perturbation on t(J), the question is whether
this influence is powerful enough to make t(J) non-zero everywhere, and
thus being able to get the edge orientations of the USO with only the first 3
terms of the power series expansion. To answer this question, we define the
following sets:

Definition 2.2. For J ⊆ [n], i ∈ J

Pi,J := {p ∈ Rn | ¯̄p(J)i + t(J)i = 0} . (2.9)

In order to achieve our goal, we would like to find vectors p avoiding these
sets for all J ⊆ [n], i ∈ J . In the following I will show that the sets Pi,J are
very small compared to Rm, and thus that its possible to avoid all of them
with very high probability.

My apologies that we will abuse notation a bit by writing q̄(J), ¯̄q(J) and
s̄(J), ¯̄s(J) for the values of our custom designed problems (see (2.3) and
(2.6)) if the variable is q or s instead of p.

32

Lemma 2.5. For any J ⊆ [n], ¯̄p(J) is a linear function in p, for p ∈ Rm.

Proof. Let µ, ν ∈ R. Set s := µ p + ν q. We have to show that ¯̄s(J) =
µ ¯̄p(J) + ν ¯̄q(J).

To do so, we first prove s̄(J) = µ p̄(J) + ν q̄(J), which is intuitively clear
since the function has the meaning of a projection onto a smaller space. For
a formal proof, we see that by definition µ p̄(J) + ν q̄(J) ∈ Im(AJ), to be
precise

µ p̄(J) + ν q̄(J) = µ A ¯̄p(J) + ν A¯̄q(J) = A(µ ¯̄p(J) + ν ¯̄q(J)). (2.10)

This tells us that µ p̄(J) + ν q̄(J) is feasible for the defining program of s̄(J).
Next, by the KKT conditions for the defining programs for p̄(J) and q̄(J)
(see beginning of the proof of Lemma 2.3), we have AT

J p = AT
J p̄(J) and

AT
J q = AT

J q̄(J), so

AT
J s = AT

J (µ p + ν q) = AT
J (µ p̄(J) + ν q̄(J)), (2.11)

which implies the KKT conditions for s̄(J) stating that µ p̄(J) + ν q̄(J) is
indeed optimal for the defining program of s̄(J).

Now we are prepared to prove ¯̄s(J) = µ ¯̄p(J)+ν ¯̄q(J). From what we have
just shown, we see that µ ¯̄p(J)+ν ¯̄q(J) is feasible for the defining program for
¯̄s(J), by equation (2.10). To see that it is optimal, we again have to verify
the KKT conditions, i.e. we have to show that (µ ¯̄p(J) + ν ¯̄q(J))J = AT

J λ for
some vector λ. But this is obvious by linearity since ¯̄p(J) and ¯̄q(J) both live
in Im(AT

J) because of their KKT conditions.

We are now ready to prove the main theorem of this section:

Theorem 2.2. Let the perturbation vector p be chosen uniformly at ran-
dom from [0, 1]m, and suppose that our matrix A does not contain any zero-
columns.
Then, with probability 1, the vector t′(J) is non-zero in all coordinates, for
all J ⊆ [n], i ∈ J .

Proof. By the definition of our spaces Pi,J we know that t′(J) does have the
desired properties whenever

p /∈
⋃

J⊆[n],i∈J

Pi,J . (2.12)

33

To realise the proof of this theorem, it will be shown that
⋃

J⊆[n],i∈J Pi,J

is a (Lebesgue) null set6 in Rm, and therefore also a null set in [0, 1]m. The
proof will then be finished since the probability of hitting this unwanted set
of measure zero is of course zero.

We fix J ⊆ [n], i ∈ J and want to show that Pi,J is a null set. To do so
we use a fact from measure theory that every non-degenerate hyperplane has
zero measure in Rm.

From the previous Lemma 2.5 we know that Pi,J is the solution set to the
linear equation ¯̄p(J)i = −t(J)i, and thus Pi,J is a —probably degenerate—
hyperplane in Rm. It remains to prove that Pi,J is not the degenerate hyper-
plane Rm = {x | 0x1 + · · ·+0xm = 0}. To do this, we distinguish two cases:

Case t(J)i 6= 0:
Then Pi,J is not the degenerate hyperplane Rm by definition. (Or alter-

natively its also easy to see that 0 /∈ Pi,J).

Case t(J)i = 0:
Suppose Pi,J is the entire space Rm. Then ¯̄p(J)i = 0 for all p ∈ Rm. In

particular
¯̄p(J)i = 0 ∀ p = AJλ, λ ∈ R|J | (2.13)

In this case, we have p̄(J) = p = AJλ by definition of p̄(J), and so by
inserting the defining program for ¯̄p(J) into the equation (2.13) we get:(

argmin xT x

AJx = AJλ

)
i

= 0 ∀ λ. (2.14)

But since A has no zero-columns, this is a contradiction to the following
helping Lemma 2.6.

Finally taking the union over a finite number (at most n 2n) of null sets
in Rm, we again get a null set. This finishes the proof.

6A Lebesgue null set N is a subset of Rm with the property that for all ε > 0, N
possesses a covering by a sequence of m-cubes with total volume 6 ε.

34

Lemma 2.6. Let M be a matrix which does not contain any zero-columns.
For any vector λ we define

q(λ) = argmin xT x (2.15)

Mx = Mλ ,

then there is a λ such that q(λ)i 6= 0.

Proof. Set λ := MT Mi. By the KKT conditions for q(λ) we have q(λ) =
MT µ for some vector µ. Now suppose q(λ)i = MT

i µ = 0. We get the
following:

Mq(λ) = Mλ

⇔ MMT µ = MMT Mi

⇔ MMT (µ−Mi) = 0

⇔ MT (µ−Mi) = 0. (2.16)

The last equivalence holding because of our linear algebra Lemma 2.2 (i).
Looking at the i-th coordinate we get 0 = MT

i (µ−Mi) = −MT
i Mi, and thus

Mi = 0 which contradicts our assumption that M had no zero-colums.

Note: The given proof for our main theorem only works with the slight
restriction that A has no zero-columns. We note that this is not a severe
restriction since any variable xi of the LP corresponding to a zero-column
Ai can easily be “removed” from the LP: If ci = 0, the variable xi has no
influence at all in the LP, and can therefore be ignored. In the other case, if
ci 6= 0, the LP is obviously unbounded as xi → ±∞.

It is also clear that perturbation does not work if A contains a zero-
column, since if Ai = 0, then the all (gk(J))i, k > 0 will always be zero.
This is because the variable xi will then have no influence at all in any of the
defining programs for gk(J), k > 0.

How does this special situation translate to the induced USO? In the USO
corresponding to this LP, all edges in direction i will by definition always be
oriented “downwards”. So the observation that variable xi can be ignored
precisely translates to the USO in the sense that here, dimension i can be
ignored because already from the beginning we know that the global sink
of the USO is located in the face located “below” dimension i, i.e. the face
corresponding to the interval [∅, [n] \ {i}].

35

2.3 Conclusion

We proved that using a random perturbation p, the orientation of any edge J\
{j} → J of the USO can be decided by only looking at the first 3 coefficients
of the power series expansion of x∗(J, J), using a suitable perturbation. This
is a linear speed-up compared to the theoretical need of 2|J |+ 2 coefficients
without perturbation.

36

3 Various Results

3.1 ‘Regularisation’ of linear programming

In the previous section we applied a perturbation to the linear program to
change its combinatorial properties so that the corresponding USO could
be decided easier. Here we will again show that a perturbation of the linear
program can be useful, but with just in the opposite direction. We will find a
perturbation that retains the combinatorial properties of the linear program,
but makes the program itself hopefully easier to solve.

We prove that for every linear program, there exists a regular linear pro-
gram with the same combinatorial properties, in the sense that it induces
the same USO.

Let A, b and c be the coefficients of the linear program

(LP) max cT x (3.1)

s.t. Ax = b ,

x > 0 ,

and let ε > 0. We define

A′ := chol(AT A + ε2I) (3.2)

b′ := A′ T−1
(AT b + εc)

c′ := 0 ,

with chol(M) denoting the unique matrix obtained by the Cholesky de-
composition of a symmetric, positive definite matrix M . Note that since the
matrix AT A + ε2I is positive definite, it’s in particular regular, which also
implies that A′ is regular since A′ T A′ = AT A+ ε2I. So A′ T is invertible and
unique, and thus all three objects are well-defined.

Lemma 3.1. Let LP’ denote the linear program defined by A′, b′ and c′.
Then

(i) For ε small enough, the regular linear program LP’ induces the same
USO as the original LP.

(ii) The solution to LP’—if feasible—can be calculated without doing the
Cholesky decomposition. It is given by

x = (AT A + ε2I)−1(AT b + εc) (3.3)

37

Proof. (i) The USO corresponding to the LP was defined by the strictly con-
vex quadratic function fε(x) = xT (AT A+ ε2I)x−2bT Ax−2εcT x (remember
Section 1.5). We now consider this function for our new LP, and calculate

f ′0(x) = xT (A′ T A′)x− 2b′ T A′x

= xT (AT A + ε2I)x− 2(A′ T b′)T x

= xT (AT A + ε2I)x− 2(AT b + εc)T x

= fε(x) . (3.4)

This equation holds for all ε and all x. Now let ε be small enough so that
the USO induced by fε is indeed the USO from the LP (see Lemma 1.2).
Now since f ′ε is also stricly convex for the case ε = 0, it’s clear that the USO
induced by LP’ is the one defined by f ′0 which equals fε, so the two USO are
indeed the same.

(ii) As we know that A′ is regular, we may write the solution to the
equation A′x = b′ as follows:

x = A′−1b′ = A′−1A′ T−1
(AT b + εc)

= (A′ T A′)−1(AT b + εc) = (AT A + ε2I)−1(AT b + εc) . (3.5)

The above result, together with the fact that a regular LP is trivial to
solve, is a double edged sword. On one hand—if the modified LP’ is feasible—
we very easily get a solution that is closely related to the optimal solution
of the original LP, in the sense that it corresponds to the global sink of the
same USO. This sink would then also directly give us the optimal solution to
the original LP. An approach to finding the sink would be to start with the
coordinates where the optimal solution x′(S) of the regularised LP (which is
the only feasible point) is strictly positive (as it is clear that they have to
be part of the sink). It’s however not known yet how fast the sink can be
constructed from such a unique optimal solution x′(S).

On the other hand—if the modified program is not feasible—we can’t
say much about the original LP. The problem is that for infeasible LP, the
meaning of the sink of the corresponding USO is not yet understood very
well. Also, this case can occur often, even if the original LP is feasible there
is no guarantee that there exists an ε > 0 such that the modified LP’ is still
feasible.

38

We note that there is still some work to do until this concept could proba-
bly be exploited algorithmically. But independent of that, this at least sheds
some new light on the original method described in Section 1, giving an ex-
planation on the meaning of the perturbed function fε inducing the USO.
This also leads us to the following section:

39

3.2 On the relation between LP and symmetric PLCP

Linear complementarity problems (LCP) have a rich combinatorial structure
and a variety of results and algorithms for LCP are known [1]. In the fol-
lowing, for q ∈ Rn, M ∈ Rn×n, we will denote by LCP(q, M) the problem of
finding a vector x ∈ Rn such that

x > 0

q + Mx > 0

xT (q + Mx) = 0 .

In this section we will examine the connection between our USO approach
to linear programming, and linear complementarity problems. When defining
our cube orientation, we in fact solved the unconstrained strictly convex
program

SCPε(I, J) min fε(x)
s.t. x ∈ RJ ,

xJ\I ≥ 0,
(3.6)

with
fε(x) = xT (AT A + εQ + ε2I)x− 2bT Ax− 2εcT x .

Now we observe that for I = ∅, J = [n] (this means for the global minimum
of the function), our optimality conditions (1.4) through (1.8) exactly define
a linear complementarity problem (LCP) with matrix M = AT A + εQ + ε2I,
and q = −AT b− εc.

In our case M is symmetric, and positive definite, thus it is a symmetric
P -matrix7. Stickney and Watson [5] used unique sink orientations to solve
any P -matrix linear complementarity problems (PLCP). And in fact for the
above mentioned LCP, their orientation exactly coincides with the orienta-
tion we have defined in Theorem 1.3.

We thus deduce that for any convex QP we have a symmetric PLCP that
induces the same USO, if we just choose ε small enough.

More interestingly, this relation also works in the other direction: Let
M , q be the coefficients of any symmetric PLCP. We use the fact that a

7M is a P -matrix ⇔ all principal minors of M are strictly positive.

40

symmetric matrix is positive definite if and only if it is also a P -matrix [1].
This means we can compute the Cholesky-decomposition chol(M). We define
a linear program (3.2) as follows:

A := chol(M) (3.7)

b := AT−1
q

c := 0 ,

(remember that M is a P -matrix and thus invertible).
Observe that again, this LP induces exactly the same USO as the original

symmetric PLCP. As also described in the preceding section, since M = AT A
is strictly positive definite, we may directly set ε := 0 to obtain the orienta-
tion. So for any symmetric PLCP we have a LP inducing the same USO. It
does however not automatically follow that this LP is also feasible.

This thinking is also motivated by the fact that despite general PLCP
is not known to be polynomial time solvable, symmetric PLCP as well as
LP indeed are. In Section 4 we will state some experimental results about
possible differences between USO coming from symmetric PLCP compared
to such from general PLCP, and ask if such differences could be exploited
algorithmically.

Another interesting motivation is that for positive semi-definite LCP,
which is solvable in polynomial time, a regularisation method with many
similarities to the one stated in Section 3.1 is known. From [1], chapter 5.6:

Theorem 3.1. Let M be a P0
8-matrix. Let {εν} be a decreasing sequence of

positive scalars with εν → 0. For each ν, let xν be the unique solution of the
LCP (q, M + ενI).

If M is positive semi-definite and the LCP (q, M) is solvable, then the
sequence {xν} converges to the least l2-norm solution of LCP(q,M).

It would be interesting to further investigate common properties of the
corresponding algorithms for LP and symmetric PLCP, especially in the USO
context. The interesting additional fact that the theorem shows convergence
towards the shortest solution allows us to gently pass over to the next section:

8M is a P0-matrix ⇔ all principal minors of M are nonnegative.

41

3.3 The USO solution is indeed the shortest one

In this short section we prove that the optimal solution for a linear program
obtained by the USO approach is indeed the shortest optimal solution. (Re-
member the intuitive argument at the beginning of Section 1.5.) This allows
us to precisely state what our “canonical” solution is that we obtain by our
USO approach for any LP. (‘Shortest’ referring to the l2-norm in Rn.)

Theorem 3.2. If the LP is feasible and bounded, then

i) x(S) is the shortest optimal solution to the LP, and

ii) y(S) is the shortest optimal solution to the dual LP.

Proof. Remember that from Theorem 1.6, we know that x(S) and y(S) is a
pair of primal and dual optimal solutions to the LP. So x(S) is the global
shortest optimal solution to the LP if and only if it is the optimal solution
to the following program

min xT x (3.8)

s.t. Ax = b

cT x = cT x(S)

x > 0 .

We immediately see that x(S) is feasible for this program, but to be optimal
it would also need to satisfy the following KKT conditions:

2x(S)S > (AT
S , cS)λ (3.9)

0 = 2x(S)[n]\S > (A T
[n]\S , c[n]\S)λ (3.10)

for some λ ∈ Rm+1, with equality holding in (3.9) for all i ∈ S with x(S)i > 0.

We start our search for a candidate for λ by remembering the following
important property of the sink of our orientation, which we already men-
tioned at the beginning of Section 1.6, equation (1.36): If S is the sink, we
have that for any ε small enough,

∇fε(x
∗
ε(S, S)) > 0 . (3.11)

42

Looking at the power series expansion of ∇fε, and computing one more
term than we already did in (1.34), we have

∇fε(x
∗
ε(S, S))T /2 = AT (b̄(S)− b) (3.12)

+ ε(AT y(S)− c̄(S))

+ ε2(AT Ag2(S)− x(S))

+ O(ε3) .

Dividing the equation by ε2, and taking into account that b̄(S) = b and
c̄(S) = c as the LP is feasible and bounded, we get

∇fε(x
∗
ε(S, S))

2ε2

T

=
1

ε
(AT y(S)− c) (3.13)

+ AT Ag2(S)− x(S)

+ O(ε) .

We plug this into (3.11) and only look at the coordinates outside S (re-
member x(S) ∈ RS), to finally obtain

0 > −1

ε
(AT

[n]\Sy(S)− c[n]\S)− AT
[n]\SAg2(S)

= (A T
[n]\S , c[n]\S)

(
−1

ε

(
y(S)
−1

)
−
(

Ag2(S)
0

))
(3.14)

But that is exactly the KKT condition (3.10) we want to prove for x(S).

So lets try
λ

2
:= −1

ε

(
y(S)

−1

)
−
(

Ag2(S)

0

)
, and check if this promising candi-

date could probably also satisfy the remaining condition (3.9). We calculate

(AT
S , cS)

λ

2
= (AT

S , cS)
(
−1

ε

(
y(S)
−1

)
−
(

Ag2(S)
0

))
= −AT

SAg2(S) = x(S)S (3.15)

by using AT
Sy(S) = cS from the definition of y(S), and the last equality hold-

ing by definition of g2(S). This indeed proves (3.9).

This finishes the first part of the proof. x(S) is in fact the shortest opti-
mal solution to the LP, because we have found a KKT multiplier λ satisfying
all optimality conditions for x(S) to be optimal to (3.8).

43

For y(S), a very similar argument works, which is even a bit easier. We
give the proof in a slightly shorter form than the above reasoning for x(S).
To prove that y(S) is optimal to

min yT y (3.16)

s.t. AT y > c

bT y = bT y(S) ,

we have to show the KKT conditions. If we write the above inequality
constraint as (AT ,−I)

(
y
z

)
= c, z > 0 , these are

2y(S) = (A , b)λ (3.17)

0 > (−I , 0)λ (3.18)

for some λ ∈ Rn+1. This time we use that at the sink, x∗ε(S, S) > 0, which

implies x(S)
ε

+ t(S) > 0. We set

λ

2
:=

1

ε

(
x(S)

−1

)
+

(
t(S)

0

)
, (3.19)

and verify that indeed, λ[n] > 0, and y(S) = (A , b)λ. The last holding
because Ax(S) = b and At(S) = y(S) by definition of x(S) and t(S). So
y(S) is the shortest optimal solution to the dual LP.

Besides the existing intuitive motivation at the beginning of Section 1.5,
we also ran an experimental test to keep up the motivation during the burden-
some search for the right λ ;-): Two million random LPs for the 3-dimensional
case were calculated and examined by the implementation (see Section 4),
and for all of these, the resulting solution from the USO was indeed the
shortest one - which now, in view of Theorem 3.2, does of course not sound
surprising anymore.

Furthermore, the theorem now tells us precisely what kind of “canonical”
solution we obtain by our USO approach, for any LP (not necessarily feasible
and bounded):

44

Corollary 3.2. For any LP,

i) x(S) is the shortest optimal solution to the LP

max c̄(S)T x
s.t. Ax = b̄(S)

x > 0,
(3.20)

ii) y(S) is the shortest optimal solution to the dual LP

min yT b̄(S)
s.t. AT y > c̄(S).

(3.21)

So if we also remember the meaning of b̄(S) and c̄(S) from Lemma 1.9,
we can finally say that the USO induced solutions x(S) and y(S) are in fact
the following: They are the shortest optimal primal and dual solutions to
the feasible and bounded LP “closest” to the original one. This nice result
now justifies that we called our solution a canonical solution.

45

3.4 Cutting off the power series

As an answer to a question proposed in [3], this paragraph will examine the
impact of cutting off the power series after the second or the third term. It
would be interesting to know if the orientation obtained by just looking at
the first two or three coefficients of the power series is also a unique sink
orientation. Unfortunately the answer to this question is no. It is thus not
possible to speed up the generation of the orientations that easily, which
again motivates the need of a correct perturbation method as described in
Section 2.

To see that cutting off does not work, we consider the LP

A =

 3 −22 0
0 23 14
0 0 0

 , b =

 0
20
23

 , c =

 7
−22
10

 . (3.22)

If we look only at the first two terms c(J) and x(J) of the power series,
we obtain the following orientation of the 3-cube:

{1,2,3}

{1,2}

{1}

{}

{3} {2}

{1,3}

{2,3}

This orientation is not a USO, since obviously it has two global sinks (S ′ =
{1, 2} and S ′′ = {3}).

46

Seeing the previous example you might think that as the LP (3.22) is
not feasible, the cut-off-method could probably still work in the feasible and
bounded case. But this is not true either: The feasible and bounded LP

A =

(
18 4 −21
−7 −21 31

)
, b =

(
21
−31

)
, c =

−18
−4
21

 (3.23)

does—when looking only at the first two terms—also induce an orientation
which does not satisfy the unique sink property. This LP induces the outmaps
[3 2 1 0 4 7 7 4]9 on the 3-cube, which again is not a USO.

Even further, our implementation shows that even looking at the first
three coefficients in the power series, c(J), x(J) and t(J), does not necessarily
result in a USO. For example the feasible and bounded LP

A =

(
22 65 57

−27 28 12

)
, b =

(
171
36

)
, c =

0
0
0

 (3.24)

would then induce the outmaps [7 6 5 4 0 3 3 0], which is not a USO either,
because it hat two sinks.

9We did not define this special notation for USO by their outmaps yet. If you are
curious please refer to the beginning of the following Section 4.

47

4 Implementation

The described new algorithm for linear programming was implemented in
Mathematica to improve the understanding of the method in practice. The
main calculation method, to evaluate the edge-orientations at a cube vertex
J , can be written quite shortly as follows:

A = 884, -4, -2<, 80, 4, 2<, 8-1, -4, 5<<;

b = 80, 0, 0<;

c = 81, -2, -1<;

J = 81, 2, 3<;

8m, n< = Dimensions@AD; j = Length@JD;

AJ = A@@All, JDD; AJt = Transpose@ AJD;

MM = Table @0, 82 j<, 82 j<D;

MM@@Range@jD, Range@jDDD = AJt.AJ;

MM@@j + Range@jD, Range@jDDD = IdentityMatrix@jD;

MM@@j + Range@jD, j + Range@jDDD = -AJt.AJ;

decided = Table@-2, 8j<D;

orientations = Table@-1, 8j<D;

g = Take@LinearSolve@MM, PadLeft@c@@JDD, 2 jD D, 81, j<D ;

k = -1; pp = -AJt.b; p = -Hc@@JDD - gL;

While@Min@decidedD < -1 && k < 2 m,

orientations = Table@If@decided@@iDD < -1 && g@@iDD != 0,

If@g@@iDD > 0, 1, -1D, orientations@@iDDD, 8i, j<D;

decided = Table@If@decided@@iDD < -1 && g@@iDD != 0, k, decided@@iDDD, 8i, j<D;

g = Take@LinearSolve@MM, PadRight@-pp, 2 jD D, 81, j<D ;

k = k + 1; pp = p; p = g;

D;

Print@"final orientations: ", orientationsD;

Print@"obtained with coefficients number: ", decidedD;

Untitled-1 1

Furthermore, we will use a convenient representation format for unique
sink orientations, as proposed in [4]: Every USO of the n-cube can be seen
as a permutation on the ground set {0, . . . , 2n − 1}.

To see this, we identify every cube vertex J ⊆ [n] with a binary vector

(a0, . . . , an−1), ai =

{
1 i ∈ J,

0 otherwise.
Also, the outmap of a vertex, i.e. the

set of the directions where the vertex has an outgoing edge, can of course
be identified with a vector o ∈ {0, 1}n. That is oi = 1 ⇔ J → J ⊕ {i}.

48

Furthermore we identify every binary vector v ∈ {0, 1}n with the unique
number

∑n−1
i=0 vi2

i. Knowing that the outmaps of a unique sink orientations
form a bijection10, we can thus represent the USO (i.e. the outmaps at all
vertices) by a permutation of {0, . . . , 2n − 1}, as in the following example:

{1,2,3}

{1,2}

{1}

{}

{3} {2}

{1,3}

{2,3}

This USO of the 3-cube can be encoded by [0 3 6 1 5 4 2 7], with for example
the number 6 meaning that at the vertex {2} (corresponding to 010 ↔ 2),
the outmap is {2, 3} (corresponding to 011 ↔ 6). As this data format may
seem a bit wired to you upon first reading, we also include unambiguous
pictures for most of the USO occurring in this section.

When dealing with orientations of the 3-cube, we will always think of the
cube vertices J labeled as in the figure above.

4.1 Number of coefficients needed from the power se-
ries

We have already shown in Section 3.4 that cutting of the power series ex-
pansion after the second or third term does not necessarily lead to a USO.
In this short section we will experimentally examine how many coefficients
are needed to decide the orientation of an edge.

The implementation clearly shows that some LPs do in fact give rise to
power series where we need more than just the first two coefficients: The LP

10This follows from the USO axioms, and is also s sufficient condition for being a USO.

49

A =

 4 −4 −2
0 2 4
−1 −4 5

 , b =

 0
0
0

 , c =

 1
−2
−1

 (4.1)

induces a power series expansion at the vertex J = {1, 2, 3} with c(J)1 =
x(J)1 = t(J)1 = g2(J)1 = 0, and g3(J)1 6= 0. This means that the edge
{2, 3} → {1, 2, 3} is decided not earlier than with the fifth coefficient g3(J).

{1,2,3}

{1,2}

{1}

{}

{3} {2}

{1,3}

{2,3}

The USO [1 0 3 2 5 4 7 6], induced by the above LP.

This example is in tight connection with Section 3.4: As we proved that
cutting off the power series does not work, these LPs must indeed induce
power series that have properties as given in this example. In addition, this
example shows that perturbing the objective function as described in Section
2 is not only effective from theoretical point of view but can really be useful
in practice.

4.2 Which USO are LP-induced?

All USO coming from P-matrix linear complementarity problems (PLCP)
according to Stickney and Watson [5] (and thus also all USO coming from
our reduction from LP or QP as noted at the end of Section 1.4) have recently
been shown to satisfy an interesting combinatorial property, the Holt-Klee
condition [2]. This means that any k-dimensional face has k vertex-disjoint
paths from its unique source to its unique sink.11

There are 744 USO of the 3-cube, and 672 of them satisfy the Holt-Klee
condition.

11The existence of unique sources follows from the USO axioms.

50

Using the implementation, ten million random LP instances for the case
n = 3 were considered to get an idea on which of the USO of the 3-cube are
induced by an LP. We found that the vast majority, at least 608 of the 672
Holt-Klee USO of the 3-cube are in fact induced by an LP.

Interestingly, still not all 3-USO satisfying the Holt-Klee condition could
be generated. Note that the experimental result of 608 USO obtained was
the same even when only 50’000 instead of 10’000’000 random LPs were used,
and it was also the same with A, b, c chosen as random sparse matrices in-
stead of A, b, c chosen just uniformly at random (both in some fixed integer
range).

This suggests that LP induced USO satisfy an even stronger condition
than the Holt-Klee conditions, distinguishing them from arbitrary USO. The
additional condition must then come from the fact that we’re solving a sym-
metric PLCP (which is positive definite), in contrast to a general PLCP
(which we know can induce all H.K. 3-USO). It’s a very interesting further
question what this further condition could be, and if it could possibly be
exploited algorithmically, eventually leading to a faster algorithm for LP.

The claim that the condition should be stronger is supported by the
experiment that the following Holt-Klee USO

{1,2,3}

{1,2}

{1}

{}

{3} {2}

{1,3}

{2,3}

[0 5 2 3 6 1 4 7]

could not by generated by 10 million random LP, and it could also not be
generated by one billion randomly chosen symmetric PLCP instances. We
also note that despite that, the USO [6 5 4 7 0 1 3 2] that is obtained by
just rotating the above figure “by one edge”, can be generated by a LP, for

51

example with A =

 35 −8 −10
0 −30 −17
−40 −4 0

 , b =

−51
15
−20

 , c =

−21
43
39

. This

leads us to the following paragraph:

Isomorphic USO The experiment suggests that the isomorphism of USO
(rotations and mirroring of the cube) is not “compliant” for LP-induced
USO, i.e. we found some USO we think are not induced by LP, despite some
isomorphic USO (just a rotation of the same USO) being LP-induced. (For
example we could very easily find an LP inducing the cyclic USO

{1,2,3}

{1,2}

{1}

{}

{3} {2}

{1,3}

{2,3}

[5 4 2 7 0 3 6 1]

by random search, but we were unable to experimentally find an LP inducing
the USO

{1,2,3}

{1,2}

{1}

{}

{3} {2}

{1,3}

{2,3}

[0 3 6 1 5 4 2 7] ,

which is isomorphic to the one stated previously.)

52

LP-induced USO may have cycles The implementation clearly showed
that some LPs do in fact induce cyclic USO: For example

A =

 8 1 8
−3 3 −4
15 −9 21

 , b =

 −1
1
1

 , c =

 1
1
1

 (4.2)

results in the cyclic USO

{1,2,3}

{1,2}

{1}

{}

{3} {2}

{1,3}

{2,3}

[5 4 2 7 0 3 6 1] .

Note This is not a big surprise as it was already known that the LCP with
matrix

M =

 5 −10 2
−10 41 −6
2 −6 1

 (4.3)

together with right side q = (1,−7, 1)T results in a cyclic USO. But then by
doing a Cholesky decomposition of M we find A and b of an LP that induces
the same USO. This is possible since M is a symmetric P -matrix, and thus
already positive definite. This means we may just set ε = 0 to get the
limiting USO (as we already described more precisely in Section 3.2). The
implementation verified that the A, b obtained that way do indeed induce
a cyclic USO. But as this matrix A looks a bit complicated, we stated an
easier LP above that was found just by random search.

53

References

[1] R. W. Cottle, J. Pang, and R. E. Stone. The Linear Complementarity
Problem. Academic Press, 1992.

[2] B. Gärtner, W. D. Morris, and L. Rüst. Unique sink orientations of
grids. In Proc. 11th Conference on Integer Programming and Combina-
torial Optimization (IPCO), volume 3509 of Lecture Notes in Computer
Science, pages 210–224, 2005.

[3] B. Gärtner and I. Schurr. Linear Programming and Unique Sink Ori-
entations. In Proc. 17th Annual Symposium on Discrete Algorithms
(SODA), pages 749–757, 2006.

[4] I. Schurr. Unique Sink Orientations of Cubes. disertation, ETH Zürich,
http://uso.io5.de, 2004.

[5] A. Stickney and L. Watson. Digraph models of bard-type algorithms
for the linear complementary problem. Mathematics of Operations Re-
search, 3:322–333, 1978.

[6] T. Szabó and E. Welzl. Unique sink orientations of cubes. In Proc. 42nd

IEEE Symp. on Foundations of Comput. Sci., pages 547–555, 2000.

54

A Duality of quadratic programs

Definition A.1. For a quadratic program

min 1
2
xT Qx− cT x

s.t. Ax = b
x > 0 ,

(A.1)

the dual program is defined as

max −1
2
xT Qx− bT y

s.t. Qx + AT y > c .
(A.2)

We remark that for Q = 0, this directly corresponds to the concept of
duality for linear programs.

Using the above definition, we can also calculate the dual program of an
unconstrained quadratic program (having no inequality constraints):

min 1
2
xT Qx− cT x

s.t. Ax = b
(A.3)

has the dual program

max − 1
2
xT Qx− bT y

s.t. Qx + AT y = c .
(A.4)

This can be seen by writing the variable x as x = u − v, u > 0, v > 0, and
using the matrix Q′ :=

(
Q −Q
−Q Q

)
, and c′ :=

(
c
−c

)
in the above definition.

55

B Source code

Mathematica code for calculating a complete USO from any linear program:

In[15]:= A = 888, 1, 8<, 8-3, 3, -4<, 815, -9, 21<<;

b = 8-1, 1, 1<;

c = 81, 2, 3<;

8m, n< = Dimensions@AD;

outmap = Table@0, 82^n<D;

For@vertex = 1, vertex < 2^n, vertex++,

J = Reverse@Pick@Reverse@Range@nDD, PadLeft@IntegerDigits@vertex, 2D, nD, 1DD;

j = Length@JD;

AJ = A@@All, JDD; AJt = Transpose@ AJD;

MM = Table @0, 82 j<, 82 j<D;

MM@@Range@jD, Range@jDDD = AJt.AJ;

MM@@j + Range@jD, Range@jDDD = IdentityMatrix@jD;

MM@@j + Range@jD, j + Range@jDDD = -AJt.AJ;

decided = Table@-2, 8j<D;

orientations = Table@1, 8j<D;

g = Take@LinearSolve@MM, PadLeft@c@@JDD, 2 jD D, 81, j<D ;

k = -1; pp = -AJt.b; p = -Hc@@JDD - gL;

While@Min@decidedD < -1 && k < 2 m,

orientations = Table@If@decided@@iDD < -1 && g@@iDD != 0,

If@g@@iDD > 0, 0, 1D, orientations@@iDDD, 8i, j<D;

decided = Table@If@decided@@iDD < -1 && g@@iDD != 0, k, decided@@iDDD, 8i, j<D;

g = Take@LinearSolve@MM, PadRight@-pp, 2 jD D, 81, j<D ;

k++; pp = p; p = g;

D;

globorient = Table @0, 8n<D; globorient@@ J DD = orientations;

outmap@@vertex + 1DD += FromDigits@Reverse@globorientD, 2D;

incoming = Pick@J, orientations, 0D;

While@Length@incomingD > 0,

nbrvtx = vertex - 2^Hincoming@@1DD - 1L;

outmap@@nbrvtx + 1DD += 2^Hincoming@@1DD - 1L;

incoming = Rest@incomingD;

D

D

outmap

Out[21]= 85, 4, 2, 7, 0, 3, 6, 1<

algorithm.nb 1

56

