
Kernels, Margins, Coresets
and

The Fight of High- vs. Low-
Dimensional Spaces

Mittagsseminar
Martin Jaggi, 26.3.2009

Support Vector Machines

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

2

8

???

[Haynes et al. '07, Xiao et al. '08, Miyawaki et al. '08]

Some weird applications

training data

http://dx.doi.org/10.1016/j.cub.2006.11.072
http://dx.doi.org/10.1016/j.cub.2006.11.072
http://dx.doi.org/10.1016/j.neunet.2007.12.022
http://dx.doi.org/10.1016/j.neunet.2007.12.022
http://dx.doi.org/10.1016/j.neuron.2008.11.004
http://dx.doi.org/10.1016/j.neuron.2008.11.004

ACM Kanellakis Theory and Practice Award

Topic Awarded to

1996 Public key cryptography
Adleman, Diffie, Hellman, Merkle,
Rivest, Shamir

1997 Data compression Lempel, Ziv

1998 Algorithmic model checking Bryant, Clarke, Emerson, McMillan

1999 Splay tree data structure Sleator, Tarjan

2000
Polynomial time interior point
methods for LP Karmarkar

2001 Genome sequencing algorithms Myers

2002 Constrained channel coding Franaszek

2003 Randomized primality tests Miller, Rabin, Solovay, Strassen

2004 AdaBoost machine learning algorithm Freund, Schapire

2005 Formal verification Holzmann, Kurshan, Vardi, Wolper

2006
Logic synthesis and simulation of
electronic systems Brayton

2007 Gröbner bases for computer algebra Buchberger

2008 Support vector machine Cortes, Vapnik

http://en.wikipedia.org/wiki/Public_key_cryptography
http://en.wikipedia.org/wiki/Public_key_cryptography
http://en.wikipedia.org/wiki/Leonard_Adleman
http://en.wikipedia.org/wiki/Leonard_Adleman
http://en.wikipedia.org/wiki/Whitfield_Diffie
http://en.wikipedia.org/wiki/Whitfield_Diffie
http://en.wikipedia.org/wiki/Martin_Hellman
http://en.wikipedia.org/wiki/Martin_Hellman
http://en.wikipedia.org/wiki/Ralph_Merkle
http://en.wikipedia.org/wiki/Ralph_Merkle
http://en.wikipedia.org/wiki/Model_checking
http://en.wikipedia.org/wiki/Model_checking
http://en.wikipedia.org/wiki/Randal_Bryant
http://en.wikipedia.org/wiki/Randal_Bryant
http://en.wikipedia.org/wiki/Edmund_M._Clarke
http://en.wikipedia.org/wiki/Edmund_M._Clarke
http://en.wikipedia.org/wiki/E._Allen_Emerson
http://en.wikipedia.org/wiki/E._Allen_Emerson
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/Interior_point_method
http://en.wikipedia.org/wiki/Interior_point_method
http://en.wikipedia.org/wiki/Interior_point_method
http://en.wikipedia.org/wiki/Interior_point_method
http://en.wikipedia.org/wiki/8b/10b_encoding
http://en.wikipedia.org/wiki/8b/10b_encoding
http://en.wikipedia.org/wiki/Primality_test
http://en.wikipedia.org/wiki/Primality_test
http://en.wikipedia.org/wiki/Gary_Miller_(professor)
http://en.wikipedia.org/wiki/Gary_Miller_(professor)
http://en.wikipedia.org/wiki/Michael_Rabin
http://en.wikipedia.org/wiki/Michael_Rabin
http://en.wikipedia.org/wiki/Robert_Solovay
http://en.wikipedia.org/wiki/Robert_Solovay
http://en.wikipedia.org/wiki/Volker_Strassen
http://en.wikipedia.org/wiki/Volker_Strassen
http://en.wikipedia.org/wiki/Yoav_Freund
http://en.wikipedia.org/wiki/Yoav_Freund
http://en.wikipedia.org/wiki/Robert_Schapire
http://en.wikipedia.org/wiki/Robert_Schapire
http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Gr%C3%B6bner_bases
http://en.wikipedia.org/wiki/Gr%C3%B6bner_bases
http://en.wikipedia.org/wiki/Support_Vector_Machine
http://en.wikipedia.org/wiki/Support_Vector_Machine

R256

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

R256

finding the optimal
(maximum margin)

separation is a quadratic
programming problem

ρ

ω

The Kernel Trick

〈x, y〉2 = (
∑

i xiyi)(
∑

i xiyi) = 〈(xixj)i,j , (yiyj)i,j〉

K(x, y) = e−
1

2σ2 ||x−y||2
Gauss Kernel

K(x, y) = 〈φ(x), φ(y)〉

Polynomial Kernel

Kernels
map all points to a higher-dimensional space, xi !−→ Φ(xi). the dual changes the following
way:

min
α

∑
i,j αiαj yiyj Φ(xi)T Φ(xj)

min
α

∑
i,j αiαj yiyj K(xi, xj)

... (5)

with ω = 1
2

∑
i αiyiΦ(xi) and

⇔ ωT xk + b = 1
2

∑
i αiyiΦ(xi)T Φ(xk) + b = 1

2

∑
i αiyiK(xi, xk) + b

Mercer’s Theorem:
Let K(., .) : Rn × Rn −→ R by any symmetric, positive semidefinite L∞ function. Then
there exists a mapping Φ(.) from Rn to some Hilbert space H such that K(x, y) uniformly
converges to 〈Φ(x),Φ(y)〉 for all x, y ∈ Rn.

Polynomial Kernel: K(x, y) = 〈x, y〉d, d ∈ N

Gauss Kernel: K(x, y) = e−||x−y||2/2σ

The inseparable case: Outliers: ,

min
ω,b,ρ

1
2 ||ω||2 − 2ρ + µ

∑
i ξi

s.t. yi(ωT xi + b) ≥ ρ− ξi, ξi ≥ 0 ∀i (6)

the dual is

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. 0 ≤ αi ≤ µ ∀i (7)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (8)

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

• We only have black-box access to scalar products.

• The solution vector is built as a linear combination
of the points (hopefully very few points).

ω

ω

The Kernel Trick

• Most geometric algorithms work
no matter if a kernel is used or not.

K(x, y) = 〈φ(x), φ(y)〉

Why does it work well?

„Because it finds a very ,sophisticated‘
separating hyperplane in a very cool
very high-dimensional space“

„Because no matter which space (or kernel)
is used, if the points are separable by large
margin, then this is an easy and low-
dimensional problem anyway“

✓

Any number of points in an arbitrary dimensional
space can efficiently be projected down to a
dimensional space, preserving separability by
large margin.

randomized deterministic

upper
bound
lower
bound

Ω
(

1
ρ2

)
O

(
1
ρ2

)
O

(
1
ρ2

)

Θ
(

1
ρ2

)

Aim of this talk:

If we have found such a
low-dimensional space
then we can forget about
the high-dimensional
original space.

„Feature Selection“

A low-dimensional
Interpretation

Random Projections

Are the points still separable if we randomly project
down to a low-dimensional space?

ω

Trying to apply the Johnson-
Lindenstrauss lemma

P[]
(1− ε)||x− y||2

(1 + ε)||x− y||2
||Px− Py||2

≤
≤

For a random projection from any down to ,
it holds that

RdRhighP

Projecting down to dimension
would preserve separation.

d := Θ
(

log n

ρ2

)

Problem: Such mappings are not computable in our case, as
we have no ortho-normal basis of our space.

≥ 1− 2e−(ε2−ε3) d
4

Solution: An alternative random projection:

Randomly pick a -subset
from our point set.

d :=
8

1− α

(
1
ρ2

+ log
1

1− β

)

ω

[Balcan,Blum,Vempala '06]Theorem 0 < α, β < 1

ρ

Let be a random unit vector in the span of these d
points. Then with probability , separates at least
an -fraction of all points by margin at least .α

≥ β
ρ/2

ω
ω

(Use Gram-Schmidt
on to get an ONB)

http://dx.doi.org/10.1007/s10994-006-7550-1
http://dx.doi.org/10.1007/s10994-006-7550-1

Another low-dimensional
Interpretation

Coresets

Is a very small subset of the points always sufficient
to represent a good solution?

ρ

ω

One or Two Polytopes?

(If the hyperplane is required
to pass through the origin,

then this is a single-polytope
separation problem.)

ρ

One or Two Polytopes?

(If the hyperplane is required
to pass through the origin,

then this is a single-polytope
separation problem.)

Given the point set, a simple greedy algorithm finds a

linear combination of just points,

separating all points by margin at least .

Coresets for polytope distance: ω

ρ

ρ/2

2
⌈

4D2

ρ2

⌉

(Where is the diameter of the polytope)D ≤ 2

ω

Theorem

⌈
2D2

ρ2

⌉
Existence: points always suffice.

Theorem

ρ

ω

[Clarkson '08 , Gärtner, Jaggi '09]

http://%5B%20Clarkson%20'08,%20G%C3%A4rtner,%20Jaggi%20'09%20%5D
http://%5B%20Clarkson%20'08,%20G%C3%A4rtner,%20Jaggi%20'09%20%5D
http://www.m8j.net/data/List/Files-143/Coresets%2520for%2520Polytope%2520Distance%2520-%2520Martins%2520Version.pdf
http://www.m8j.net/data/List/Files-143/Coresets%2520for%2520Polytope%2520Distance%2520-%2520Martins%2520Version.pdf

Gilbert‘s Algorithm
[Gilbert '66]

Finds a -
approximation
after at most
many steps.

2
⌈

4D2

ρ2

⌉
1/2

[Clarkson '08 , Gärtner, Jaggi '09]

http://link.aip.org/link/?SJC/4/61/1
http://link.aip.org/link/?SJC/4/61/1
http://%5B%20Clarkson%20'08,%20G%C3%A4rtner,%20Jaggi%20'09%20%5D
http://%5B%20Clarkson%20'08,%20G%C3%A4rtner,%20Jaggi%20'09%20%5D
http://www.m8j.net/data/List/Files-143/Coresets%2520for%2520Polytope%2520Distance%2520-%2520Martins%2520Version.pdf
http://www.m8j.net/data/List/Files-143/Coresets%2520for%2520Polytope%2520Distance%2520-%2520Martins%2520Version.pdf

Lower bound

pi := λei + (1− λ)x

Rd

⌈
D2

ρ2

⌉
There are arbitrary sized point sets for which any
linear combination that separates with at least ,
needs at least many points.

ρ/2

ω

[Gärtner, Jaggi '09]

http://www.m8j.net/data/List/Files-143/Coresets%2520for%2520Polytope%2520Distance%2520-%2520Martins%2520Version.pdf
http://www.m8j.net/data/List/Files-143/Coresets%2520for%2520Polytope%2520Distance%2520-%2520Martins%2520Version.pdf

Conclusions

• If we have a large margin, then finding a
good separating hyperplane is a low-
dimensional problem.

• Nearly matching upper and lower bounds
for the dimension that is necessary.

• Finding a good kernel is roughly the same
as feature selection (finding a good new low-
dimensional feature space).

randomized deterministic

upper
bound

lower
bound

Ω
(

1
ρ2

)
O

(
1
ρ2

)
O

(
1
ρ2

)

