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Support Vector Machines

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:
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[ Haynes et al. '07, Xiao et al. '08, Miyawaki et al. '08 ]

Some weird applications

training data

http://dx.doi.org/10.1016/j.cub.2006.11.072
http://dx.doi.org/10.1016/j.cub.2006.11.072
http://dx.doi.org/10.1016/j.neunet.2007.12.022
http://dx.doi.org/10.1016/j.neunet.2007.12.022
http://dx.doi.org/10.1016/j.neuron.2008.11.004
http://dx.doi.org/10.1016/j.neuron.2008.11.004
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1997 Data compression Lempel, Ziv

1998 Algorithmic model checking Bryant, Clarke, Emerson, McMillan

1999 Splay tree data structure Sleator, Tarjan
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Polynomial time interior point 
methods for LP Karmarkar

2001 Genome sequencing algorithms Myers

2002 Constrained channel coding Franaszek

2003 Randomized primality tests Miller, Rabin, Solovay, Strassen

2004 AdaBoost machine learning algorithm Freund, Schapire

2005 Formal verification Holzmann, Kurshan, Vardi, Wolper

2006
Logic synthesis and simulation of 
electronic systems Brayton

2007 Gröbner bases for computer algebra Buchberger

2008 Support vector machine Cortes, Vapnik
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finding the optimal 
(maximum margin) 

separation is a quadratic 
programming problem

ρ

ω



The Kernel Trick

〈x, y〉2 = (
∑

i xiyi)(
∑

i xiyi) = 〈(xixj)i,j , (yiyj)i,j〉

K(x, y) = e−
1

2σ2 ||x−y||2
Gauss Kernel

K(x, y) = 〈φ(x), φ(y)〉

Polynomial Kernel

Kernels
map all points to a higher-dimensional space, xi !−→ Φ(xi). the dual changes the following
way:

min
α

∑
i,j αiαj yiyj Φ(xi)T Φ(xj)

min
α

∑
i,j αiαj yiyj K(xi, xj)

... (5)

with ω = 1
2

∑
i αiyiΦ(xi) and

⇔ ωT xk + b = 1
2

∑
i αiyiΦ(xi)T Φ(xk) + b = 1

2

∑
i αiyiK(xi, xk) + b

Mercer’s Theorem:
Let K(., .) : Rn × Rn −→ R by any symmetric, positive semidefinite L∞ function. Then
there exists a mapping Φ(.) from Rn to some Hilbert space H such that K(x, y) uniformly
converges to 〈Φ(x),Φ(y)〉 for all x, y ∈ Rn.

Polynomial Kernel: K(x, y) = 〈x, y〉d, d ∈ N

Gauss Kernel: K(x, y) = e−||x−y||2/2σ

The inseparable case: Outliers: ,

min
ω,b,ρ

1
2 ||ω||2 − 2ρ + µ

∑
i ξi

s.t. yi(ωT xi + b) ≥ ρ− ξi, ξi ≥ 0 ∀i (6)

the dual is

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. 0 ≤ αi ≤ µ ∀i (7)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (8)

2
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• We only have black-box access to scalar products.

• The solution vector      is built as a linear combination 
of the points (hopefully very few points).

ω

ω

The Kernel Trick

• Most geometric algorithms work 
no matter if a kernel is used or not.

K(x, y) = 〈φ(x), φ(y)〉



Why does it work well?

„Because it finds a very ,sophisticated‘ 
separating hyperplane in a very cool 
very high-dimensional space“

„Because no matter which space (or kernel) 
is used, if the points are separable by large 
margin, then this is an easy and low-
dimensional problem anyway“

✓



Any number of points in an arbitrary dimensional 
space can efficiently be projected down to a
dimensional space, preserving separability by 
large margin.

randomized deterministic

upper 
bound
lower 
bound

Ω
(

1
ρ2

)
O

(
1
ρ2

)
O

(
1
ρ2

)

Θ
(

1
ρ2

)

Aim of this talk:

If we have found such a 
low-dimensional space 
then we can forget about 
the high-dimensional 
original space.

„Feature Selection“



A low-dimensional 
Interpretation

Random Projections

Are the points still separable if we randomly project 
down to a low-dimensional space?

ω



Trying to apply the Johnson-
Lindenstrauss lemma

P[ ]
(1− ε)||x− y||2

(1 + ε)||x− y||2
||Px− Py||2

≤
≤

For a random projection      from any             down to       ,
it holds that 

RdRhighP

Projecting down to dimension
would preserve separation.

d := Θ
(

log n

ρ2

)

Problem: Such mappings are not computable in our case, as
we have no ortho-normal basis of our space.

≥ 1− 2e−(ε2−ε3) d
4



Solution: An alternative random projection:

Randomly pick a                                          -subset
from our point set.

d :=
8

1− α

(
1
ρ2

+ log
1

1− β

)

ω

[ Balcan,Blum,Vempala '06 ]Theorem 0 < α, β < 1

ρ

Let     be a random unit vector in the span of these d 
points. Then with probability       ,      separates at least 
an    -fraction of all points by margin at least       .α

≥ β
ρ/2

ω
ω

(Use Gram-Schmidt 
on      to get an ONB)

http://dx.doi.org/10.1007/s10994-006-7550-1
http://dx.doi.org/10.1007/s10994-006-7550-1


Another low-dimensional 
Interpretation

Coresets

Is a very small subset of the points always sufficient
to represent a good solution?



ρ

ω

One or Two Polytopes?

(If the hyperplane is required 
to pass through the origin, 

then this is a single-polytope 
separation problem.)



ρ
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Given the point set, a simple greedy algorithm finds a

linear combination      of just                  points,

separating all points by margin at least        .

Coresets for polytope distance: ω

ρ

ρ/2

2
⌈

4D2

ρ2

⌉

(Where              is the diameter of the polytope)D ≤ 2

ω

Theorem

⌈
2D2

ρ2

⌉
Existence:          points always suffice. 

Theorem

ρ

ω

[ Clarkson '08 , Gärtner, Jaggi '09 ]

http://%5B%20Clarkson%20'08,%20G%C3%A4rtner,%20Jaggi%20'09%20%5D
http://%5B%20Clarkson%20'08,%20G%C3%A4rtner,%20Jaggi%20'09%20%5D
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Gilbert‘s Algorithm
[ Gilbert '66 ]

Finds a       -
approximation 
after at most        
many steps.
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Lower bound

pi := λei + (1− λ)x

Rd
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⌉
There are arbitrary sized point sets for which any 
linear combination that separates with at least        , 
needs at least           many points.
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Conclusions

• If we have a large margin, then finding a 
good separating hyperplane is a low-
dimensional problem.

• Nearly matching upper and lower bounds 
for the dimension that is necessary.

• Finding a good kernel is roughly the same 
as feature selection (finding a good new low-
dimensional feature space).
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