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The Problem

x ∈ Rn

1T x = 1

x ≥ 0

min f(x)

Sparse Approximation
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f( ) convex

X ∈ Sn×n

X � 0
Tr(X) = 1

min f(X)

symetric matrices 
living in the
spectahedron

vectors living in 
the simplex
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The Algorithm

x(k) eix(k+1) := (1− λ) + λ X(k+1) X(k) vvT:= (1− λ) + λ

λ = 1/k

Rank = kSparsity = k

:= arg max vT (−∇f( )) v
||v|| = 1

X(k)v

,largest‘ Eigenvector„Coordinate Descent“

:= arg max −∇f( )i
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The Algorithm

The Convergence

x(k) eix(k+1) := (1− λ) + λ X(k+1) X(k) vvT:= (1− λ) + λ

:= arg max vT (−∇f( )) v
||v|| = 1

X(k)v:= arg max −∇f( )i
i

x(k)i

After                 steps the 
primal-dual error is          .
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[ Clarkson SODA '08 ]

After                 steps the 
primal-dual error is          .
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[ Hazan LATIN '08 ]

Approximate Eigenvector computation

X(k)

||v|| = 1
v

Instead of

M := −∇f( ):= arg max vT Mv

it is enough to work with

: vT Mv ≥ λmax − �2v ||v|| = 1

Such a      can be found by doing                 Lanzcos steps.  Alternative: Power methodO
�

1
�

�
v
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http://dx.doi.org/10.1007/978-3-540-78773-0_27
http://dx.doi.org/10.1007/978-3-540-78773-0_27


Find            s.t.

X � 0
X ∈ Sn×n

X

Tr(X) = 1

Feasibility Version:

How to solve general Semidefinite Programs? X ∈ Sn×n

X � 0
Tr(X) = 1

min f(X)

X � 0
X ∈ Sn×n

Tr(AiX) ≤ bi

min Tr(CX)

Optimization Version:

f(X) :=
1
M

log

�
m+1�

i=1

eM(Tr(AiX)−bi)

�

„Soft Max“

i ∈ [m]

Tr(AiX) ≤ bi
i ∈ [m + 1]

4/10By this trick, Hazan‘s algorithm is able to satisfy all constraints up to an error          .≤ �

a side note



and machine learning
Matrix Factorizations
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The Netflix Prize:
17‘000 Movies
500‘000 Customers
100‘000‘000 Ratings
       (Observed Entries ≈ 1%)

= 1 ⇔ „George Clooney 
plays in movie j“

= 1 ⇔ „Customer i is female“



47AUGUST 2009

Our winning entries consist of more than 100 differ-
ent predictor sets, the majority of which are factorization 
models using some variants of the methods described here. 
Our discussions with other top teams and postings on the 
public contest forum indicate that these are the most popu-
lar and successful methods for predicting ratings. 

Factorizing the Netflix user-movie matrix allows us 
to discover the most descriptive dimensions for predict-
ing movie preferences. We can identify the first few most 
important dimensions from a matrix decomposition and 
explore the movies’ location in this new space. Figure 3 
shows the first two factors from the Netflix data matrix 
factorization. Movies are placed according to their factor 
vectors. Someone familiar with the movies shown can see 
clear meaning in the latent factors. The first factor vector 
(x-axis) has on one side lowbrow comedies and horror 
movies, aimed at a male or adolescent audience (Half Baked, 
Freddy vs. Jason), while the other side contains drama or 
comedy with serious undertones and strong female leads 
(Sophie’s Choice, Moonstruck). The second factorization 
axis (y-axis) has independent, critically acclaimed, quirky 
films (Punch-Drunk Love, I Heart Huckabees) on the top, 
and on the bottom, mainstream formulaic films (Armaged-
don, Runaway Bride). There are interesting intersections 
between these boundaries: On the top left corner, where 
indie meets lowbrow, are Kill Bill and Natural Born Kill-
ers, both arty movies that play off violent themes. On the 
bottom right, where the serious female-driven movies meet 

preferences might cause a one-time 
event; however, a recurring event is 
more likely to reflect user opinion. 

The matrix factorization model 
can readily accept varying confidence 
levels, which let it give less weight to 
less meaningful observations. If con-
fidence in observing rui is denoted as 
cui, then the model enhances the cost 
function (Equation 5) to account for 
confidence as follows: 

min
* * *, ,p q b

( , )u i

cui(rui  µ bu  bi 

 pu
Tqi)

2 + (|| pu ||
2 + || qi ||

2  
 + bu

2 + bi
2)  (8) 

For information on a real-life ap-
plication involving such schemes, 
refer to “Collaborative Filtering for 
Implicit Feedback Datasets.”10 

NETFLIX PRIZE 
COMPETITION 

In 2006, the online DVD rental 
company Netflix announced a con-
test to improve the state of its recommender system.12 To 
enable this, the company released a training set of more 
than 100 million ratings spanning about 500,000 anony-
mous customers and their ratings on more than 17,000 
movies, each movie being rated on a scale of 1 to 5 stars. 
Participating teams submit predicted ratings for a test set 
of approximately 3 million ratings, and Netflix calculates 
a root-mean -square error (RMSE) based on the held-out 
truth. The first team that can improve on the Netflix algo-
rithm’s RMSE performance by 10 percent or more wins a 
$1 million prize. If no team reaches the 10 percent goal, 
Netflix gives a $50,000 Progress Prize to the team in first 
place after each year of the competition. 

The contest created a buzz within the collaborative fil-
tering field. Until this point, the only publicly available data 
for collaborative filtering research was orders of magni-
tude smaller. The release of this data and the competition’s 
allure spurred a burst of energy and activity. According to 
the contest website (www.netflixprize.com), more than 
48,000 teams from 182 different countries have down-
loaded the data. 

Our team’s entry, originally called BellKor, took over 
the top spot in the competition in the summer of 2007, 
and won the 2007 Progress Prize with the best score at the 
time: 8.43 percent better than Netflix. Later, we aligned 
with team Big Chaos to win the 2008 Progress Prize with a 
score of 9.46 percent. At the time of this writing, we are still 
in first place, inching toward the 10 percent landmark.
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Figure 3. The !rst two vectors from a matrix decomposition of the Net"ix Prize 
data. Selected movies are placed at the appropriate spot based on their factor 
vectors in two dimensions. The plot reveals distinct genres, including clusters of 
movies with strong female leads, fraternity humor, and quirky independent !lms. 

for recommender systems
Matrix Factorizations
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[Short IEEE article,   

Wikipedia: Netflix Prize]

http://research.yahoo.com/files/ieeecomputer.pdf
http://research.yahoo.com/files/ieeecomputer.pdf
http://en.wikipedia.org/wiki/Netflix_Prize
http://en.wikipedia.org/wiki/Netflix_Prize


and machine learning
Matrix Factorizations

Applications:

• Customer i     ↔     Product j

          (Amazon, Netflix, Migros Cumulus etc...)

• Customer i     →     Customer j

          (Symmetry?, k=?)

• Word i     ↔     Document j

          (Search engines, Latent Semantic Analysis)

• many other applications
(e.g. dimensionality reduction, clustering)
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Accuracy vs Model complexity
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≈ UV TY =: X

f(X) :=
�

ij∈S

(X − Y )ij
2

min
U,V

f(UV T )

Error Model complexity

Low Rankrank(UV T )s.t.

= rank(X)

= k

Low Norm||U ||2Fro + ||V ||2Fros.t.

= 2||X||∗
= t

[ Srebro NIPS '05 ]

m

n
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http://ttic.uchicago.edu/~nati/mmmf/
http://ttic.uchicago.edu/~nati/mmmf/


= Tr(Z)

Low Norm Matrix Factorization
f(X) :=

�

ij∈S

(X − Y )ij
2

Z ∈ S(n+m)×(n+m)

Z � 0
Tr(Z) = t

is equivalent to

min
Z

f(Z)
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(UT V T )

=: Z




UUT UV T

V UT V V T





n m

Perfectly fits for
Hazan‘s Algorithm.

min
U,V

f(UV T )

||U ||2Fro + ||V ||2Fros.t. = t
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= Tr(UUT ) + Tr(V V T )
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(Z − Y )ij
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We need the largest Eigenvector 
of M := −∇f( )Z(k)
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Largest Eigenvector of the 
bipartite weighted graph 
with adjacency matrix M.
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Low Norm Matrix Factorization
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• Hazan‘s new approximate SDP solver 
applies to Low Norm Matrix Factorization

• Easy to parallelize (Power method)

• Algorithm maintains sparsity structure of 
the given matrix, needs no additional 
memory

• Speed is comparable to existing methods, 
and much better than generic SDP solvers

Have to be careful, principal EV is not 
always the largest EV! Add a constant 
to the diagonal in that case.



Thanks


