
Approximate SDP solvers,
 Matrix Factorizations,
 the Netflix Prize,
 and PageRank

Mittagseminar

Martin Jaggi, Oct 6 2009

The Problem

x ∈ Rn

1T x = 1

x ≥ 0

min f(x)

Sparse Approximation

1/10

f() convex

X ∈ Sn×n

X � 0
Tr(X) = 1

min f(X)

symetric matrices
living in the
spectahedron

vectors living in
the simplex

The Problem
x ∈ Rn

1T x = 1

x ≥ 0

min f(x)

X ∈ Sn×n

X � 0
Tr(X) = 1

min f(X)

The Algorithm

x(k) eix(k+1) := (1− λ) + λ X(k+1) X(k) vvT:= (1− λ) + λ

λ = 1/k

Rank = kSparsity = k

:= arg max vT (−∇f()) v
||v|| = 1

X(k)v

,largest‘ Eigenvector„Coordinate Descent“

:= arg max −∇f()i
i

x(k)i

= UUT

X(k) =

⎫
⎬k
⎭

v(1) v(k)

v(1)

v(k)

2/10

x(k)

The Algorithm

The Convergence

x(k) eix(k+1) := (1− λ) + λ X(k+1) X(k) vvT:= (1− λ) + λ

:= arg max vT (−∇f()) v
||v|| = 1

X(k)v:= arg max −∇f()i
i

x(k)i

After steps the
primal-dual error is .

O
�

1
�

�

≤ �

[Clarkson SODA '08]

After steps the
primal-dual error is .

O
�

1
�

�

≤ �

[Hazan LATIN '08]

Approximate Eigenvector computation

X(k)

||v|| = 1
v

Instead of

M := −∇f():= arg max vT Mv

it is enough to work with

: vT Mv ≥ λmax − �2v ||v|| = 1

Such a can be found by doing Lanzcos steps. Alternative: Power methodO
�

1
�

�
v

3/10

http://dx.doi.org/10.1007/978-3-540-78773-0_27
http://dx.doi.org/10.1007/978-3-540-78773-0_27

Find s.t.

X � 0
X ∈ Sn×n

X

Tr(X) = 1

Feasibility Version:

How to solve general Semidefinite Programs? X ∈ Sn×n

X � 0
Tr(X) = 1

min f(X)

X � 0
X ∈ Sn×n

Tr(AiX) ≤ bi

min Tr(CX)

Optimization Version:

f(X) :=
1
M

log

�
m+1�

i=1

eM(Tr(AiX)−bi)

�

„Soft Max“

i ∈ [m]

Tr(AiX) ≤ bi
i ∈ [m + 1]

4/10By this trick, Hazan‘s algorithm is able to satisfy all constraints up to an error .≤ �

a side note

and machine learning
Matrix Factorizations

★ ★ ★
★

★ ★
★ ★

★

★ ★ ★ ★
★

★ ★ ★
★ ★

★ ★
★

★ ★

★ ★ ★ ★ ★
★

Movie

C
us

to
m

er

≈ UV T

=

⎫
⎬k
⎭

v(1)

v(k)

u(1) u(k)

=Y

5/10

The Netflix Prize:
17‘000 Movies
500‘000 Customers
100‘000‘000 Ratings
 (Observed Entries ≈ 1%)

= 1 ⇔ „George Clooney
plays in movie j“

= 1 ⇔ „Customer i is female“

47AUGUST 2009

Our winning entries consist of more than 100 differ-
ent predictor sets, the majority of which are factorization
models using some variants of the methods described here.
Our discussions with other top teams and postings on the
public contest forum indicate that these are the most popu-
lar and successful methods for predicting ratings.

Factorizing the Netflix user-movie matrix allows us
to discover the most descriptive dimensions for predict-
ing movie preferences. We can identify the first few most
important dimensions from a matrix decomposition and
explore the movies’ location in this new space. Figure 3
shows the first two factors from the Netflix data matrix
factorization. Movies are placed according to their factor
vectors. Someone familiar with the movies shown can see
clear meaning in the latent factors. The first factor vector
(x-axis) has on one side lowbrow comedies and horror
movies, aimed at a male or adolescent audience (Half Baked,
Freddy vs. Jason), while the other side contains drama or
comedy with serious undertones and strong female leads
(Sophie’s Choice, Moonstruck). The second factorization
axis (y-axis) has independent, critically acclaimed, quirky
films (Punch-Drunk Love, I Heart Huckabees) on the top,
and on the bottom, mainstream formulaic films (Armaged-
don, Runaway Bride). There are interesting intersections
between these boundaries: On the top left corner, where
indie meets lowbrow, are Kill Bill and Natural Born Kill-
ers, both arty movies that play off violent themes. On the
bottom right, where the serious female-driven movies meet

preferences might cause a one-time
event; however, a recurring event is
more likely to reflect user opinion.

The matrix factorization model
can readily accept varying confidence
levels, which let it give less weight to
less meaningful observations. If con-
fidence in observing rui is denoted as
cui, then the model enhances the cost
function (Equation 5) to account for
confidence as follows:

min
* * *, ,p q b

(,)u i

cui(rui µ bu bi

 pu
Tqi)

2 + (|| pu ||
2 + || qi ||

2
 + bu

2 + bi
2) (8)

For information on a real-life ap-
plication involving such schemes,
refer to “Collaborative Filtering for
Implicit Feedback Datasets.”10

NETFLIX PRIZE
COMPETITION

In 2006, the online DVD rental
company Netflix announced a con-
test to improve the state of its recommender system.12 To
enable this, the company released a training set of more
than 100 million ratings spanning about 500,000 anony-
mous customers and their ratings on more than 17,000
movies, each movie being rated on a scale of 1 to 5 stars.
Participating teams submit predicted ratings for a test set
of approximately 3 million ratings, and Netflix calculates
a root-mean -square error (RMSE) based on the held-out
truth. The first team that can improve on the Netflix algo-
rithm’s RMSE performance by 10 percent or more wins a
$1 million prize. If no team reaches the 10 percent goal,
Netflix gives a $50,000 Progress Prize to the team in first
place after each year of the competition.

The contest created a buzz within the collaborative fil-
tering field. Until this point, the only publicly available data
for collaborative filtering research was orders of magni-
tude smaller. The release of this data and the competition’s
allure spurred a burst of energy and activity. According to
the contest website (www.netflixprize.com), more than
48,000 teams from 182 different countries have down-
loaded the data.

Our team’s entry, originally called BellKor, took over
the top spot in the competition in the summer of 2007,
and won the 2007 Progress Prize with the best score at the
time: 8.43 percent better than Netflix. Later, we aligned
with team Big Chaos to win the 2008 Progress Prize with a
score of 9.46 percent. At the time of this writing, we are still
in first place, inching toward the 10 percent landmark.

–1.5 –1.0 –0.5 0.0 0.5 1.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

Factor vector 1

Fa
cto

r v
ec

to
r 2

 Freddy Got Fingered

Freddy vs. J
ason

Half B
aked

Road Trip

The Sound of M
usic

Sophie’s C
hoice

Moonstru
ck

Maid in Manhattan

The Way We Were

Runaway Bride

Coyote Ugly

The Royal Tenenbaums

Punch-Drunk Love

I Heart H
uckabees

Armageddon

Citiz
en Kane

The Waltons: S
eason 1

Stepmom

Julien Donkey-Boy

Siste
r Act

The Fast a
nd the Furious

The Wizard of Oz

Kill B
ill:

Vol. 1

ScarfaceNatural Born Kille
rs

Annie Hall

Belle de Jour
Lost i

n Translation

The Longest Y
ard

Being John Malkovich

Catwoman

Figure 3. The !rst two vectors from a matrix decomposition of the Net"ix Prize
data. Selected movies are placed at the appropriate spot based on their factor
vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent !lms.

for recommender systems
Matrix Factorizations

≈
⎫
⎬k
⎭

v(1)

v(k)

u(1) u(k)

Y

6/10

[Short IEEE article,

Wikipedia: Netflix Prize]

http://research.yahoo.com/files/ieeecomputer.pdf
http://research.yahoo.com/files/ieeecomputer.pdf
http://en.wikipedia.org/wiki/Netflix_Prize
http://en.wikipedia.org/wiki/Netflix_Prize

and machine learning
Matrix Factorizations

Applications:

• Customer i ↔ Product j

 (Amazon, Netflix, Migros Cumulus etc...)

• Customer i → Customer j

 (Symmetry?, k=?)

• Word i ↔ Document j

 (Search engines, Latent Semantic Analysis)

• many other applications
(e.g. dimensionality reduction, clustering)

1 3

4

1

2 3

5 3

2

2 1 3

i

j

7/10

Accuracy vs Model complexity
1 2

4

1

2 3
5 3

2

2 1 3

≈ UV TY =: X

f(X) :=
�

ij∈S

(X − Y)ij
2

min
U,V

f(UV T)

Error Model complexity

Low Rankrank(UV T)s.t.

= rank(X)

= k

Low Norm||U ||2Fro + ||V ||2Fros.t.

= 2||X||∗
= t

[Srebro NIPS '05]

m

n

8/10

http://ttic.uchicago.edu/~nati/mmmf/
http://ttic.uchicago.edu/~nati/mmmf/

= Tr(Z)

Low Norm Matrix Factorization
f(X) :=

�

ij∈S

(X − Y)ij
2

Z ∈ S(n+m)×(n+m)

Z � 0
Tr(Z) = t

is equivalent to

min
Z

f(Z)

1

2
4

1 2

3

5

3

2
2

1
3

1 2

4

1

2 3

5 3

2

2 1 3

=
�

U
V

�
(UT V T)

=: Z




UUT UV T

V UT V V T





n m

Perfectly fits for
Hazan‘s Algorithm.

min
U,V

f(UV T)

||U ||2Fro + ||V ||2Fros.t. = t

9/10

= Tr(UUT) + Tr(V V T)

1

2
4

1 2

3

5

3

2
2

1
3

1 2

4

1

2 3

5 3

2

2 1 3 =: Z

f(Z) :=
�

ij∈S�

(Z − Y)ij
2

We need the largest Eigenvector
of M := −∇f()Z(k)

0

0
M =

mn

1

2
4

1 2

3

5

3

2
2

1
3

1 2

4

1

2 3

5 3

2

2 1 3

Largest Eigenvector of the
bipartite weighted graph
with adjacency matrix M.

n m

C
us

to
m

er
s

M
ovies

Low Norm Matrix Factorization

10/10

• Hazan‘s new approximate SDP solver
applies to Low Norm Matrix Factorization

• Easy to parallelize (Power method)

• Algorithm maintains sparsity structure of
the given matrix, needs no additional
memory

• Speed is comparable to existing methods,
and much better than generic SDP solvers

Have to be careful, principal EV is not
always the largest EV! Add a constant
to the diagonal in that case.

Thanks

