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Algorithm 1 Greedy on a Compact Convex Set

Pick an arbitrary starting point x(0) ⇤ D
for k = 0 . . .⇥ do

Let dx ⇤ ⇥f(x(k)) be a subgradient to f at x(k)

Compute s := approx argmin
y�D

⌅y, dx⇧
Let � := 2

k+2

Update x(k+1) := x(k) + �(s� x(k))
end for

s

Theorem:
Algorithm obtains 
accuracy
after     steps.
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Our Method Gradient Descent

Cost per step

Convergence

Sparse / Low 
Rank Solutions

Approx. solve
linearized problem on D

Projection back to D
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Sparse Approximation

unit simplex

min
x2�n

f(x)

Sparsity as a function of 
the approximation quality“Coresets”

2.4. Sparse Approximation over the Simplex 25

2.4.1. Upper Bound: Sparse Greedy on the Simplex

Here we will show how the general algorithm and its analysis from the
previous Section 2.3 do in particular lead to Clarkson’s approach [Cla10]
for minimizing any convex function over the unit simplex. The algo-
rithm follows directly from Algorithm 1, and will have a running time of
O
�

1

"

�

many gradient evaluations. We will crucially make use of the fact
that every linear function attains its minimum at a vertex of the simplex
�n. Formally, for any vector c 2 Rn, it holds that min

s2�

n

sT c = min
i

ci .

This property is easy to verify in the special case here, but is also known
in a more general setting from the theory of linear programming [MG07].
We have obtained that the internal linearized primitive can be solved
exactly by choosing

ExactLinear (c,�n) := ei with i = argmin
i

ci .

Algorithm 3 Sparse Greedy on the Simplex
Input: Convex function f , target accuracy "
Output: "-approximate solution for problem (2.15)
Set x(0) := e

1

for k = 0 . . . 1 do
Let dx 2 @f(x(k)) be a subgradient to f at x(k)

Compute i := argmini (dx)i
Let ↵ := 2

k+2

Update x(k+1) := x(k) + ↵(ei � x(k))
end for

Observe that in each iteration, this algorithm only introduces at most
one new non-zero coordinate, so that the sparsity of x(k) is always upper
bounded by the number of steps k, plus one, given that we start at a
vertex. Since Algorithm 3 only moves in coordinate directions, it can be
seen as a variant of coordinate descent. The convergence result directly
follows from the general analysis we gave in the previous Section 2.3.

Theorem 2.8 ([Cla10, Theorem 2.3], Convergence of Sparse Greedy on
the Simplex). For each k � 1, the iterate x(k) of Algorithm 3 satisfies

f(x(k)) � f(x⇤)  4Cf

k + 2
.

where x⇤ 2 �n is an optimal solution to problem (2.15).

[ Clarkson SODA '08 ]

Corollary:
Algorithm gives an    -approximate 
solution of sparsity               .O

�
1
"

�"

D := conv({ei | i 2 [n]})

⌦
�
1
"

�lower bound:

http://portal.acm.org/citation.cfm?id=1347082.1347183&coll=GUIDE&dl=GUIDE&CFID=54983861&CFTOKEN=92505933
http://portal.acm.org/citation.cfm?id=1347082.1347183&coll=GUIDE&dl=GUIDE&CFID=54983861&CFTOKEN=92505933


Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

• Smallest enclosing ball

• Model Predictive Control

Applications

• Linear Classifiers
  (such as Support Vector Machines,      -loss)`2

min
x2�n

x

T (K + t1)x

• Mean Variance 
Portfolio Optimization

min
x2�n

x

T

Cx� t · bTx



Sparse Approximation

`1-ball

min
kxk11

f(x)

⌦
�
1
"

�lower bound:
Sparsity as a function of 
the approximation quality“Coresets”

Corollary:
Algorithm gives an    -approximate 
solution of sparsity               .O

�
1
"

�"

30
Convex Optimization without Projection Steps, with Applications to

Sparse and Low Rank Approximation

where i 2 [n] is an index of a maximal coordinate of c measured in
absolute value, or formally i 2 argmaxj |cj |.

Using this observation for c = �dx in our general Algorithm 1, we
therefore directly obtain the following simple method for `

1

-regularized
convex optimization, as depicted in the Algorithm 4.

Algorithm 4 Sparse Greedy on the `
1

-Ball
Input: Convex function f , target accuracy "
Output: "-approximate solution for problem (2.17)
Set x(0) := 0
for k = 0 . . . 1 do
Let dx 2 @f(x(k)) be a subgradient to f at x(k)

Compute i := argmaxi |(dx)i|,
and let s := ei · sign ((�dx)i)
Let ↵ := 2

k+2

Update x(k+1) := x(k) + ↵(s � x(k))
end for

Observe that in each iteration, this algorithm only introduces at most
one new non-zero coordinate, so that the sparsity of x(k) is always upper
bounded by the number of steps k. This means that the method is again
of coordinate-descent-type, as in the simplex case of the previous Section
2.4.1. Its convergence analysis again directly follows from the general
analysis from Section 2.3.

Theorem 2.12 (Convergence of Sparse Greedy on the `
1

-Ball). For each
k � 1, the iterate x(k) of Algorithm 4 satisfies

f(x(k)) � f(x⇤)  4Cf

k + 2
.

where x⇤ 2 }n is an optimal solution to problem (2.17).

Furthermore, for any " > 0, after at most 2
l

4C
f

"

m

+1 = O
�

1

"

�

many

steps, it has an iterate x(k) of sparsity O
�

1

"

�

, satisfying g(x(k))  ".

Proof. This is a corollary of Theorem 2.3 and Theorem 2.5.

The Duality Gap, and Duality of the Norms. We recall the definition
of the duality gap (2.4) given by the linearization at any point x 2 ⇤n,
see Section 2.2. Thanks to our Observation 2.2, the computation of the

D := conv({±ei | i 2 [n]})
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Low Rank Approximation

spectahedron

X 2 Symn⇥n

X ⌫ 0

Tr(X) = 1

=

[ Hazan LATIN '08 ]

Corollary:
Algorithm gives an    -approximate 
solution of rank               .O

�
1
"

�"
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Convex Optimization without Projection Steps, with Applications to

Sparse and Low Rank Approximation

Algorithm 6 Hazan’s Algorithm / Sparse Greedy for Bounded Trace

Input: Convex function f with curvature constant Cf , target accu-
racy "
Output: "-approximate solution for problem (2.19)
Set X(0) := vvT for an arbitrary unit length vector v 2 Rn.
for k = 0 . . . 1 do
Let DX 2 @f(X(k)) be a subgradient to f at X(k)

Let ↵ := 2

k+2

Compute v := v(k) = ApproxEV (DX , ↵Cf )
Update X(k+1) := X(k) + ↵(vvT � X(k))

end for

If we want to understand this proposed Algorithm 6 as an instance
of the general convex optimization Algorithm 1, we just need to explain
why the largest eigenvector should indeed be a solution to the internal
linearized problem ApproxLinear(), as required in Algorithm 1. For-
mally, we have to show that v := ApproxEV(A, "0) does approximate
the linearized problem, that is

vvT • A  min
Y 2S

Y • A + "0

for the choice of v := ApproxEV(A, "0), and any matrix A 2 Sn⇥n.

This fact is formalized in Lemma 2.15 below. This means that anal-
ogously to the unit simplex, any linear function attains its minimum
at a “vertex” of the Spectahedron S. This will be the crucial fact en-
abling the fast implementation of Algorithm 6. Alternatively, if exact
eigenvector computations are available, we can also implement the ex-
act variant of Algorithm 1 using ExactLinear(), thereby halving the
total number of iterations.

Observe that an approximate eigenvector here is significantly easier
to compute than a projection onto the feasible set S. If we were to
find the k.kFro-closest PSD matrix to a given symmetric matrix A,
we would have to compute a complete eigenvector decomposition of A,
and only keeping those corresponding to positive eigenvalues, which is
computationally expensive. By contrast, a single approximate smallest
eigenvector computation as in ApproxEV(A, "0) can be done in near
linear time in the number of non-zero entries of A. We will discuss the
implementation of ApproxEV(A, "0) in more detail further below.

D := conv(
�
vv

T
�� v2Rn,
kvk2=1

 
)

⌦
�
1
"

�lower bound:

min
x2D

f(x)

http://dx.doi.org/10.1007/978-3-540-78773-0_27
http://dx.doi.org/10.1007/978-3-540-78773-0_27


• Trace norm regularized problems

Applications

Low-Rank Matrix Recovery
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f(X)

• Max norm regularized problems
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The Parameterized Problem

Pathwise Optimization

gt(x)  �
2
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“Continuity in the parameter”

min
x2D

f

t

(x)

There are                       many intervals

of piecewise constant     -approx. solutions.

Theorem:
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O
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�

[ Giesen, J, Laue ESA 2010 ]

http://dx.doi.org/10.1007/978-3-642-15775-2_45
http://dx.doi.org/10.1007/978-3-642-15775-2_45


Applications
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of moving points

• Model Predictive Control
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• Recommender SystemsFigure 1: Samples of the USPS digit images.
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