
Sparse Convex
Optimization Methods

PhD Defense Talk

2011 / 10 / 04

Martin Jaggi

for Machine Learning

Examiner:
 Emo Welzl

Co-Examiners:
 Bernd Gärtner, Elad Hazan, Joachim Giesen, Joachim Buhmann

D ⇢ Rn

Convex Optimization

D ⇢ Rn

min
x2D

f(x)

x

f(x)

D ⇢ Rn
x

f(x)
min
x2D

f(x)

D ⇢ Rn
x

f(x)
min
x2D

f(x)

D ⇢ Rn
x

f(x)
min
x2D

f(x)

D ⇢ Rn
x

f(x)
The Linearized Problem

min
y2D

f(x) + hy � x, d

x

i

Algorithm 1 Greedy on a Compact Convex Set

Pick an arbitrary starting point x(0) ⇤ D
for k = 0 . . .⇥ do

Let dx ⇤ ⇥f(x(k)) be a subgradient to f at x(k)

Compute s := approx argmin
y�D

⌅y, dx⇧
Let � := 2

k+2

Update x(k+1) := x(k) + �(s� x(k))
end for

s

Theorem:
Algorithm obtains
accuracy
after steps.

O
�
1
k

�

k

D ⇢ Rn
x

f(x)
The Linearized Problem

min
y2D

f(x) + hy � x, d

x

i

Our Method Gradient Descent

Cost per step

Convergence

Sparse / Low
Rank Solutions

Approx. solve
linearized problem on D

Projection back to D

✓
(depending on the domain)

✗

1/k 1/k

d
x

History & Related Work

Domain

Frank & Wolfe
1956

Dunn
1978, 1980

Zhang
2003

Clarkson
2008, 2010

Hazan
2008

J. PhD Thesis

linear inequality
constraints

general bounded
convex domain

convex hulls

unit simplex

semidefinite matrices
of bounded trace

general bounded
convex domain

Known
Stepsize

Approx.
Subproblem

Primal-Dual
Guarantee

✗ ✗ ✗

✗ ✓ ✗

✗ ✓ ✗

✓ ✗ ✓
✓ ✓ ✓
✓ ✓ ✓

Sparse Approximation

unit simplex

min
x2�n

f(x)

Sparsity as a function of
the approximation quality“Coresets”

2.4. Sparse Approximation over the Simplex 25

2.4.1. Upper Bound: Sparse Greedy on the Simplex

Here we will show how the general algorithm and its analysis from the
previous Section 2.3 do in particular lead to Clarkson’s approach [Cla10]
for minimizing any convex function over the unit simplex. The algo-
rithm follows directly from Algorithm 1, and will have a running time of
O
�

1

"

�

many gradient evaluations. We will crucially make use of the fact
that every linear function attains its minimum at a vertex of the simplex
�n. Formally, for any vector c 2 Rn, it holds that min

s2�

n

sT c = min
i

ci .

This property is easy to verify in the special case here, but is also known
in a more general setting from the theory of linear programming [MG07].
We have obtained that the internal linearized primitive can be solved
exactly by choosing

ExactLinear (c,�n) := ei with i = argmin
i

ci .

Algorithm 3 Sparse Greedy on the Simplex
Input: Convex function f , target accuracy "
Output: "-approximate solution for problem (2.15)
Set x(0) := e

1

for k = 0 . . . 1 do
Let dx 2 @f(x(k)) be a subgradient to f at x(k)

Compute i := argmini (dx)i
Let ↵ := 2

k+2

Update x(k+1) := x(k) + ↵(ei � x(k))
end for

Observe that in each iteration, this algorithm only introduces at most
one new non-zero coordinate, so that the sparsity of x(k) is always upper
bounded by the number of steps k, plus one, given that we start at a
vertex. Since Algorithm 3 only moves in coordinate directions, it can be
seen as a variant of coordinate descent. The convergence result directly
follows from the general analysis we gave in the previous Section 2.3.

Theorem 2.8 ([Cla10, Theorem 2.3], Convergence of Sparse Greedy on
the Simplex). For each k � 1, the iterate x(k) of Algorithm 3 satisfies

f(x(k)) � f(x⇤)  4Cf

k + 2
.

where x⇤ 2 �n is an optimal solution to problem (2.15).

[Clarkson SODA '08]

Corollary:
Algorithm gives an -approximate
solution of sparsity .O

�
1
"

�"

D := conv({ei | i 2 [n]})

⌦
�
1
"

�lower bound:

http://portal.acm.org/citation.cfm?id=1347082.1347183&coll=GUIDE&dl=GUIDE&CFID=54983861&CFTOKEN=92505933
http://portal.acm.org/citation.cfm?id=1347082.1347183&coll=GUIDE&dl=GUIDE&CFID=54983861&CFTOKEN=92505933

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

• Smallest enclosing ball

• Model Predictive Control

Applications

• Linear Classifiers
 (such as Support Vector Machines, -loss)`2

min
x2�n

x

T (K + t1)x

• Mean Variance
Portfolio Optimization

min
x2�n

x

T

Cx� t · bTx

Sparse Approximation

`1-ball

min
kxk11

f(x)

⌦
�
1
"

�lower bound:
Sparsity as a function of
the approximation quality“Coresets”

Corollary:
Algorithm gives an -approximate
solution of sparsity .O

�
1
"

�"

30
Convex Optimization without Projection Steps, with Applications to

Sparse and Low Rank Approximation

where i 2 [n] is an index of a maximal coordinate of c measured in
absolute value, or formally i 2 argmaxj |cj |.

Using this observation for c = �dx in our general Algorithm 1, we
therefore directly obtain the following simple method for `

1

-regularized
convex optimization, as depicted in the Algorithm 4.

Algorithm 4 Sparse Greedy on the `
1

-Ball
Input: Convex function f , target accuracy "
Output: "-approximate solution for problem (2.17)
Set x(0) := 0
for k = 0 . . . 1 do
Let dx 2 @f(x(k)) be a subgradient to f at x(k)

Compute i := argmaxi |(dx)i|,
and let s := ei · sign ((�dx)i)
Let ↵ := 2

k+2

Update x(k+1) := x(k) + ↵(s � x(k))
end for

Observe that in each iteration, this algorithm only introduces at most
one new non-zero coordinate, so that the sparsity of x(k) is always upper
bounded by the number of steps k. This means that the method is again
of coordinate-descent-type, as in the simplex case of the previous Section
2.4.1. Its convergence analysis again directly follows from the general
analysis from Section 2.3.

Theorem 2.12 (Convergence of Sparse Greedy on the `
1

-Ball). For each
k � 1, the iterate x(k) of Algorithm 4 satisfies

f(x(k)) � f(x⇤)  4Cf

k + 2
.

where x⇤ 2 }n is an optimal solution to problem (2.17).

Furthermore, for any " > 0, after at most 2
l

4C
f

"

m

+1 = O
�

1

"

�

many

steps, it has an iterate x(k) of sparsity O
�

1

"

�

, satisfying g(x(k))  ".

Proof. This is a corollary of Theorem 2.3 and Theorem 2.5.

The Duality Gap, and Duality of the Norms. We recall the definition
of the duality gap (2.4) given by the linearization at any point x 2 ⇤n,
see Section 2.2. Thanks to our Observation 2.2, the computation of the

D := conv({±ei | i 2 [n]})

Sparse Recovery

• -regularized regression`1

min
kxk1t

kAx� bk22

Applications

Low Rank Approximation

spectahedron

X 2 Symn⇥n

X ⌫ 0

Tr(X) = 1

=

[Hazan LATIN '08]

Corollary:
Algorithm gives an -approximate
solution of rank .O

�
1
"

�"

38
Convex Optimization without Projection Steps, with Applications to

Sparse and Low Rank Approximation

Algorithm 6 Hazan’s Algorithm / Sparse Greedy for Bounded Trace

Input: Convex function f with curvature constant Cf , target accu-
racy "
Output: "-approximate solution for problem (2.19)
Set X(0) := vvT for an arbitrary unit length vector v 2 Rn.
for k = 0 . . . 1 do
Let DX 2 @f(X(k)) be a subgradient to f at X(k)

Let ↵ := 2

k+2

Compute v := v(k) = ApproxEV (DX , ↵Cf)
Update X(k+1) := X(k) + ↵(vvT � X(k))

end for

If we want to understand this proposed Algorithm 6 as an instance
of the general convex optimization Algorithm 1, we just need to explain
why the largest eigenvector should indeed be a solution to the internal
linearized problem ApproxLinear(), as required in Algorithm 1. For-
mally, we have to show that v := ApproxEV(A, "0) does approximate
the linearized problem, that is

vvT • A  min
Y 2S

Y • A + "0

for the choice of v := ApproxEV(A, "0), and any matrix A 2 Sn⇥n.

This fact is formalized in Lemma 2.15 below. This means that anal-
ogously to the unit simplex, any linear function attains its minimum
at a “vertex” of the Spectahedron S. This will be the crucial fact en-
abling the fast implementation of Algorithm 6. Alternatively, if exact
eigenvector computations are available, we can also implement the ex-
act variant of Algorithm 1 using ExactLinear(), thereby halving the
total number of iterations.

Observe that an approximate eigenvector here is significantly easier
to compute than a projection onto the feasible set S. If we were to
find the k.kFro-closest PSD matrix to a given symmetric matrix A,
we would have to compute a complete eigenvector decomposition of A,
and only keeping those corresponding to positive eigenvalues, which is
computationally expensive. By contrast, a single approximate smallest
eigenvector computation as in ApproxEV(A, "0) can be done in near
linear time in the number of non-zero entries of A. We will discuss the
implementation of ApproxEV(A, "0) in more detail further below.

D := conv(
�
vv

T
�� v2Rn,
kvk2=1

)

⌦
�
1
"

�lower bound:

min
x2D

f(x)

http://dx.doi.org/10.1007/978-3-540-78773-0_27
http://dx.doi.org/10.1007/978-3-540-78773-0_27

• Trace norm regularized problems

Applications

Low-Rank Matrix Recovery

min
kXk⇤t

f(X)

• Max norm regularized problems

1 3

4
1
2 3

5 3
2

2 1 3

Matrix Factorizations

The Netflix challenge:
17k Movies
500k Customers
100M Observed Entries
 (≈ 1%)

for recommender systems

Movies
C

us
to

m
er

s

⇡ UV T

=

⎫
⎬k
⎭

v(1)

v(k)

u(1) u(k)

=Y

min
U,V

X

(i,j)2�

(Y
ij

� (UV T)
ij

)2

s.t. kUk2
Fro

+ kV k2
Fro

= t

Sulovský

0

@
UUT UV T

V UT V V T

1

A
1

2
4

1 2

3

5

3

2
2

1
3

1 2
4

1
2 3

5 3
2

2 1 3 =: X

min
X⌫0

f(X)

s.t. T r(X) = t

Is
 e

qu
iv

al
en

t
to

:

[J, Sulovský ICML 2010]

http://www.m8j.net/(All)Matrix%2520Factorizations%2520and%2520SDP
http://www.m8j.net/(All)Matrix%2520Factorizations%2520and%2520SDP

D ⇢ Rn

x

f(x)
gap(x)

The Problem

min
x2D

f(x)

A Simple Alternative Optimization Duality

Weak Duality

!(x)  f(x⇤)  f(x0)

The Dual

�(x) :=

min
y2D

f(x) + hy � x, d

x

i

!(x)

The Parameterized Problem

Pathwise Optimization

gt(x)  �
2

“Better than necessary”

gt0(x)  �

“Still good enough”

gt0(x)� gt(x)  �
�
1� 1

2

�The difference

0

100

200

ft(x
⇤
t)

t t0

�t0(x)

ft0(x)

⇤ |t0 � t| ⇥ � · Pf
“Continuity in the parameter”

min
x2D

f

t

(x)

There are many intervals

of piecewise constant -approx. solutions.

Theorem:

"
O
�
1
"

�

[Giesen, J, Laue ESA 2010]

http://dx.doi.org/10.1007/978-3-642-15775-2_45
http://dx.doi.org/10.1007/978-3-642-15775-2_45

Applications
• Smallest enclosing ball

of moving points

• Model Predictive Control

• SVMs, MKL (with 2 base kernels)

min
x2�n

x

T (K + t1)x

• Mean Variance
Portfolio Optimization

min
x2�n

x

T

Cx� t · bTx

• robust PCA

• Recommender SystemsFigure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

te
st

 a
cc

ur
ac

y

t0.7

0.8

0.9

1.0

0.001 0.01 0.1 1 10 100 1000 10000 100000

C
ro

s
s
-V

a
li
d

a
ti

o
n

 A
c

c
u

ra
c

y

1/C

ionosphere
breast-cancer

Bernd Gärtner

Joachim Giesen

Soeren Laue

Marek Sulovský

co-authors:

Thanks

0

100

200

ft(x
⇤
t)

t t0

�t0(x)

ft0(x)

D ⇢ Rn
x

f(x)

3D visualization:

Robert Carnecky

