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Group Testing
Dorfman, R. (1943). The Detection of Defective Members of Large Populations. 

Annals of Mathematical Statistics

Kainkaryam et al. (2010). poolMC: Smart pooling of mRNA samples in microarray 
experiments. BMC Bioinformatics
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Coding theory interpretation:      is the parity check matrix of a linear codeA
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Compressed sensing
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Candes, E. J., & Tao, T. (2005). Decoding by Linear Programming. 
IEEE Transactions on Information Theory (1200 citations)

Donoho, D. L. (2006). Compressed sensing. 
IEEE Transactions on Information Theory (3400 citations)
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k-sparse signals are recovered by taking the solution of smallest        -norm
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Phase transition

CHAPTER 3. PERFORMANCE ANALYSIS: EMPIRICAL PHASE DIAGRAMS32

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ = n / p

ρ 
= 

k 
/ n

Stepwise with FDR threshold, z~N(0,16), Normalized L2 error, p=200
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Figure 3.8: Empirical Phase diagram for Forward Stepwise-FDR Thresholding: each

color indicates a different median normalized !2 error of the coefficients ||β̂−β||2
||β||2 over

10 realizations. A term is added to the model if it has the largest t-statistic of all
candidate terms and its corresponding p-value is less than the FDR value, defined
as (.25×(number of terms currently in the model)/(total number of variables)). The
number of variables is fixed at 200, and model noise z ∼ N(0, 16). This version of
Forward Stepwise has a Phase Transition similar to the theoretical curve from Figure
2.1 (overlaid) rather than the steep dropoff of classical Forward Stepwise seen in
Figure 3.7.

Stodden, V. (2006). Model Selection When The Number Of Variables 
Exceeds The Number Of Observations. PhD thesis. stanford.edu.
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Why does                            have sparse solutions?
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How to solve                            in practice?
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Single Pixel Camera

Duarte et al. Single-Pixel Imaging via Compressive Sampling. 
IEEE Signal Processing Magazine
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Computer Vision
Background Subtraction

Candes, E. J. et al. (2011). Robust principal component analysis 
Journal of the ACM

11:24 E. J. Candès et al.

Fig. 2. Background modeling from video. Three frames from a 200-frame video sequence taken in an airport
[Li et al. 2004]. (a) Frames of original video M. (b)-(c) Low-rank L̂ and sparse components Ŝ obtained by PCP,
(d)-(e) competing approach based on alternating minimization of an m-estimator [Torre and Black 2003].
PCP yields a much more appealing result despite using less prior knowledge.

perform nontrivial post-processing for object detection, tracking, and so on. Our goal
here is simply to demonstrate the potential real-world applicability of the theory and
approaches of this article.

We consider two example videos introduced in Li et al. [2004]. The first is a sequence
of 200 grayscale frames taken in an airport. This video has a relatively static back-
ground, but significant foreground variations. The frames have resolution 176 × 144;
we stack each frame as a column of our matrix M ∈ R25,344×200. We decompose M
into a low-rank term and a sparse term by solving the convex PCP problem (1.1) with
λ = 1/

√
n1. On a desktop PC with a 2.33 GHz Core2 Duo processor and 2 GB RAM, our

Matlab implementation requires 806 iterations, and roughly 43 minutes to converge.10

Figure 2(a) shows three frames from the video; (b) and (c) show the corresponding
columns of the low rank matrix L̂ and sparse matrix Ŝ (its absolute value is shown
here). Notice that L̂ correctly recovers the background, while Ŝ correctly identifies the
moving pedestrians. The person appearing in the images in L̂ does not move throughout
the video.

Figure 2 (d) and (e) compares the result obtained by Principal Component Pursuit to
a very closely related technique from the computer vision literature [Torre and Black
2003].11 That approach also aims at robustly recovering a good low-rank approxima-
tion, but uses a more complicated, nonconvex m-estimator, which incorporates a local
scale estimate that implicitly exploits the spatial characteristics of natural images.
This leads to a highly nonconvex optimization, which is solved locally via alternat-
ing minimization. Interestingly, despite using more prior information about the signal

10Lin et al. [2009a] suggests a variant of ALM optimization procedure, there termed the “Inexact ALM” that
finds a visually similar decomposition in far fewer iterations (less than 50). However, since the convergence
guarantee for that variant is weak, we choose to present the slower, exact result here.
11We use the code package downloaded from http://www.salleurl.edu/˜ftorre/papers/rpca/rpca.zip, modified
to choose the rank of the approximation as suggested in de la Torre and Black [2003].

Journal of the ACM, Vol. 58, No. 3, Article 11, Publication date: May 2011.
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A Structured Norm
Obozinski, G., Jacob, L., & Vert, J.-P. (October 2011). 

Group Lasso with Overlaps: the Latent Group Lasso approach. 
arXiv stat.ML.
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Figure 1: (a) Left : E↵ect of penalty (1) on the support: removing any group containing a
variable removes the variable from the support. When variables in groups 1 and
3 are shrunked to zero, the support of the solution consists of the variables of the
second group which are neither in the first, nor in the third. (b) Right : Latent
decomposition ofw over (vg)

v2G : applying the `1/`2 penalty to the decomposition
instead of applying it to the w

g

removes only the variables which do not belong
to any selected group. The support of the solution if latent vectors v

1

and v
3

are
shrunked to zero will be all variables in the second group.

When G is not a partition anymore and some of its groups overlap, the penalty (1) is
still a norm, because we assume that all covariates belong to at least one group. However,
while the Lasso is sometimes loosely presented as selecting covariates and the group Lasso
as selecting groups of covariates, the group Lasso estimator (2) does not necessarily select
groups in that case. The reason is that the precise e↵ect of non-di↵erentiable penalties is
to set covariates, or groups of covariates, to zero, and not to select them. When there is
no overlap between groups, setting groups to zero leaves the other full groups to nonzero,
which can give the impression that group Lasso is generally appropriate to select a small
number of groups. When the groups overlap, however, setting one group to zero shrinks its
covariates to zero even if they belong to other groups, in which case these other groups will
not be entirely selected. This is illustrated in Figure 1(a) with three overlapping groups of
covariates. If the penalty leads to an estimate in which the norm of the first and of the
third group are zero, what remains nonzero is not the second group, but the covariates of
the second group which are neither in the first nor in the third one. More formally, the
overlapping case has been extensively studied by Jenatton et al. (2009), who showed that in
the case where L(w) is an empirical risk and under very general assumptions on the data,
the support of a solution ŵ of (2) almost surely satisfies

supp (ŵ) =

0

@

[

g2G0

g

1

A

c

for some G
0

⇢ G, i.e., the support is almost surely the complement of a union of groups.
Equivalently, the support is an intersection of the complements of some of groups considered.
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Lemma: the unit ball of              is 
the convex hull of the union of disks 

k.kG

Figure 2: Unit balls for k ·k
`1/`2

(left), proposed by Jenatton et al. (2009), and ⌦G
[ (middle),

proposed in this paper, for the groups G = {{1, 2}, {2, 3}}. w
2

is represented as
the vertical coordinate. We note that singularities exist in both cases, but occur
at di↵erent positions: for k · k

`1/`2
they correspond to situations where only w

1

or only w
2

is nonzero, i.e., where all covariates of one group are shrunk to 0; for
⌦G
[, they correspond to situations where only w

1

or only w
3

is equal to 0, i.e.,
where all covariates of one group are nonzero. For comparison, we show on the
right the unit ball of both norms for the partition G = {{1, 2}, {3}}, where they
both reduce to the classical group Lasso penalty.
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Figure 3: (Left) The unit ball of ⌦ for the groups {1, 2}, {1, 3}, {2, 3} in R3. (Right) a
diagram that represents the restriction of the unit ball to the positive orthant.
The black lines separate the surface in four regions. The triangular central region
is W

bal

. On the interior of each region and on the colored outer boundaries,
the group-support is constant, non-ambiguous (i.e., the weak and strong group-
supports coincide) and represented by color bullets or the color of the edge, with
one color associated to each group. On the boundary of W

bal

, the black lines
indicate the group-support is ambiguous, the weak group-support containing all
three groups, and the strong group-support being equal to that of the outer
adjacent region for each black segment.
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Obozinski, G., Jacob, L., & Vert, J.-P. (October 2011). 
Group Lasso with Overlaps: the Latent Group Lasso approach. 
arXiv stat.ML.
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Relation to Set-Cover

supp(vg) ✓ g

kxk1 := min
(vi)

X

i2[d]

|vi|

s.t. x =
X

i2[d]

v

i

supp(vi) = {i}

g ✓ [d]G is a collection of subsets                       

[

g2G
g = [d]

supp(vi) = {i}

kxk0 := min
(vi)

X

i2[d]

1vi 6=0

s.t. x =
X

i2[d]

v

i

supp(vg) ✓ g

kxkG�set

cover

:= min
(vg

)

X

g2G
1vg 6=0

s.t. x =
X

g2G
v

g

kxkG := min
(vg)

X

g2G
kvgkg

s.t. x =
X

g2G
v

g



Open Questions

• More applications (related to set-cover?)

• Phase transition phenomenon when applied to the 
combinatorial set-cover?

• Is it the “closest” convex function to set-cover?
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