Block-Coordinate Frank-Wolfe Optimization with applications to structured prediction

<u>Martin Jaggi</u> CMAP, Ecole Polytechnique, Paris

Optimization and Big Data Workshop, Edinburgh, 2013 / 5 / 2

Co-Authors: Simon Lacoste-Julien, Mark Schmidt and Patrick Pletscher

Outline

Two Old First-Order Optimization Algorithms

- Coordinate Descent
- The Frank-Wolfe Algorithm
- Duality for Constrained Convex Optimization
- Combining Frank-Wolfe and Coordinate Descent
- Applications: Large Margin Prediction
 - binary SVMs
 - structural SVMs

Coordinate Descent

Coordinate Descent

Selection of next coordinate:

- the one of steepest desc.
- **cycle** (hard to analyze!)
- random sampling

 $f(\boldsymbol{x})$

The Frank-Volfe Algorithm

Frank and Wolfe (1956)

 $\mathcal{D}\subset \mathbb{R}^d$

The Linearized Problem

$$\min_{\boldsymbol{s'}\in\mathcal{D}} f(\boldsymbol{x}) + \left\langle \boldsymbol{s'} - \boldsymbol{x}, \nabla f(\boldsymbol{x}) \right\rangle$$

Algorithm 1 Frank-Wolfefor
$$k = 0 \dots K$$
 doCompute $s := \underset{s' \in \mathcal{D}}{\operatorname{arg min}} \langle s', \nabla f(x^{(k)}) \rangle$ Let $\gamma := \frac{2}{k+2}$ Update $x^{(k+1)} := (1 - \gamma)x^{(k)} + \gamma s$ end for

S

f(x)

 \mathbf{x}

 $\mathcal{D}\subset \mathbb{R}^d$

Some Examples of Atomic Domains Suitable for Frank-Wolfe

\mathcal{X}	Optimization Domain		Complexity of one Frank-Wolfe Iteration		
	Atoms \mathcal{A}	$\mathcal{D} = \operatorname{conv}(\mathcal{A})$	$\sup_{oldsymbol{s}\in\mathcal{D}}\langleoldsymbol{s},oldsymbol{y} angle$	Complexity	
\mathbb{R}^n	Sparse Vectors	$\ .\ _1$ -ball	$\ oldsymbol{y}\ _\infty$	O(n)	
\mathbb{R}^n	Sign-Vectors	$\ .\ _{\infty}$ -ball	$\ oldsymbol{y}\ _1$	O(n)	
\mathbb{R}^n	ℓ_p -Sphere	$\ .\ _p$ -ball	$\ oldsymbol{y}\ _q$	O(n)	
\mathbb{R}^n	Sparse Non-neg. Vectors	Simplex Δ_n	$\max_i \{ \boldsymbol{y}_i \}$	O(n)	
\mathbb{R}^n	Latent Group Sparse Vec.	$\ .\ _{\mathcal{G}}$ -ball	$\max_{g \in \mathcal{G}} \left\ \boldsymbol{y}_{(g)} \right\ _{g}^{*}$	$\sum_{g \in \mathcal{G}} g $	
$\boxed{\mathbb{R}^{m \times n}}$	Matrix Trace Norm	$\ .\ _{tr}$ -ball	$\ oldsymbol{y}\ _{op} = \sigma_1(oldsymbol{y})$	$\tilde{O}(N_f/\sqrt{\varepsilon'})$ (Lanczos)	
$\mathbb{R}^{m \times n}$	Matrix Operator Norm	$\ .\ _{op}$ -ball	$\ \boldsymbol{y}\ _{tr} = \ (\sigma_i(\boldsymbol{y}))\ _1$	SVD	
$\boxed{\mathbb{R}^{m \times n}}$	Schatten Matrix Norms	$\ (\sigma_i(.))\ _p$ -ball	$\ (\sigma_i(\boldsymbol{y}))\ _q$	SVD	
$\boxed{\mathbb{R}^{m \times n}}$	Matrix Max-Norm	$\ .\ _{\max}$ -ball		$\tilde{O}(N_f(n+m)^{1.5}/\varepsilon'^{2.5})$	
$\boxed{\mathbb{R}^{n \times n}}$	Permutation Matrices	Birkhoff polytope		$O(n^3)$	
$\mathbb{R}^{n \times n}$	Rotation Matrices	888888888888	88888888888888	SVD (Procrustes prob.)	
$\mathbb{S}^{n \times n}$	Rank-1 PSD matrices of unit trace	$\{\boldsymbol{x} \succeq 0, \operatorname{Tr}(\boldsymbol{x}) = 1\}$	$\lambda_{ ext{max}}(oldsymbol{y})$	$\tilde{O}(N_f/\sqrt{\varepsilon'})$ (Lanczos)	
$\mathbb{S}^{n \times n}$	PSD matrices of bounded diagonal	$\{ \boldsymbol{x} \succeq 0, \ \boldsymbol{x}_{ii} \leq 1 \}$	8187878787878787878787878787	$\tilde{O}(N_f n^{1.5}/\varepsilon'^{2.5})$	

Table 1: Some examples of atomic domains suitable for optimization using the Frank-Wolfe algorithm. Here SVD refers to the complexity of computing a singular value decomposition, which is $O(\min\{mn^2, m^2n\})$. N_f is the number of non-zero entries in the gradient of the objective func-

Dudık et al. 2011, Tewari et al. 2011, J. 2011

The Linearized Problem

$$\min_{\boldsymbol{s'} \in \mathcal{D}} f(\boldsymbol{x}) + \left< \boldsymbol{s'} - \boldsymbol{x}, \nabla f(\boldsymbol{x}) \right>$$

Primal Convergence: Algorithms obtain $f(\boldsymbol{x}^{(k)}) = f(\boldsymbol{x}^*)$

$$f(\boldsymbol{x}^{(\kappa)}) - f(\boldsymbol{x}^*) \le O(\frac{1}{k})$$

after k steps.

[Frank & Wolfe 1956]

$$f(x)$$

Primal-Dual Convergence: Algorithms obtain $gap(\boldsymbol{x}^{(k)}) \leq O(\frac{1}{k})$ after k steps.

[Clarkson 2008, J. 2013]

A Simple Optimization Duality

Original Problem

 $\min_{\boldsymbol{x}\in\mathcal{D}}f(\boldsymbol{x})$

The DualValue $\begin{aligned} \omega(\boldsymbol{x}) := \\ \min_{\boldsymbol{s'} \in \mathcal{D}} f(\boldsymbol{x}) + \langle \boldsymbol{s'} - \boldsymbol{x}, \nabla f(\boldsymbol{x}) \rangle \end{aligned}$

Weak Duality

 $\omega(\boldsymbol{x}) \leq \boldsymbol{f}(\boldsymbol{x}^*) \leq f(\boldsymbol{x}')$

Block-Separable Optimization Problems

 $\min_{\boldsymbol{x}\in\mathcal{D}^{(1)}\times\cdots\times\mathcal{D}^{(n)}}f(\boldsymbol{x})$ $oldsymbol{x} = (oldsymbol{x}_{(1)}, \dots, oldsymbol{x}_{(n)})$

Algorithm 2: Uniform Coordinate DescentLet
$$\boldsymbol{x}^{(0)} \in \mathcal{D}$$
for $k = 0 \dots K$ doPick $i \in_{u.a.r.} [n]$ Compute $\boldsymbol{s}_{(i)} := \operatorname*{arg\,min}_{\boldsymbol{s}_{(i)} \in \mathcal{D}^{(i)}} \left\langle \boldsymbol{s}_{(i)}, \nabla_{(i)} f(\boldsymbol{x}^{(k)}) \right\rangle$ $+\frac{L_i}{2} ||\boldsymbol{s}_{(i)} - \boldsymbol{x}_{(i)}||^2$ Update $\boldsymbol{x}_{(i)}^{(k+1)} := \boldsymbol{x}_{(i)}^{(k)} + (\boldsymbol{s}_{(i)} - \boldsymbol{x}_{(i)}^{(k)})$ end

Nesterov (2012) Richtárik, Takáč (2012) ``Huge-Scale'' Coordinate Descent

Theorem: Algorithm obtains accuracy $\frac{2n}{k+2n}$ after k steps.

Hidden constant: Curvature $\leq \sum_{i} L_f diam^2(\mathcal{D}^{(i)})$

(also in **duality gap**, and with **inexact** subproblems)

Applications: Large Margin Prediction

 Binary Support Vector Machine (no bias) 8 • also: Ranking SVM 2006 3 5 2 6 1 6 0 3 4 5 3 $\langle w, \phi(x_i) y_i
angle \geq 1 - \xi_i$ 0 46320212 O 6 2 2 32 D B C primal problem: **1 8 15 11 25 1** $\min_{\boldsymbol{w}} \quad \frac{\lambda}{2} \|\boldsymbol{w}\|^2$ $+rac{1}{n}\sum^{n}\max\left\{0,1-\left\langleoldsymbol{w},oldsymbol{\phi}(oldsymbol{x}_{i})\,oldsymbol{y}_{i}
ight
angle
ight\}$ 1 1 3 3l

$\begin{array}{c} 1 & 1 & 1 & 3 & 2 & 0 & 0 & 0 & 0 \\ 8 & 2 & 6 & 16 & 0 & 3 & 45 & 3 & 0 & 1 \\ 1 & 0 & 4 & 0 & 2 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 & 2 & 0 & 2 & 1 \\ 0 & 2 & 2 & 3 & 1 & 0 & 1 & 5 \\ 3 & 1 & 8 & 1 & 0 & 1 & 1 & 2 & 5 \\ 1 & 1 & 2 & 1 & 3 & 5 \\ 1 & 1 & 2 & 1 & 3 & 5 \end{array}$

Binary SVM

primal

 $egin{aligned} & \min_{oldsymbol{w} \in \mathbb{R}^d} \quad rac{\lambda}{2} \left\|oldsymbol{w}
ight\|^2 \ & +rac{1}{n} \sum_{i=1}^n \max\left\{0, 1-ig\langleoldsymbol{w}, oldsymbol{\phi}(oldsymbol{x}_i) oldsymbol{y}_i
ight\} \ & i ext{-th column of } A \end{aligned}$

- d-dim
- unconstrained
- *non*-smooth, strongly convex

dual

 $\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \quad f(\boldsymbol{\alpha}) := \frac{\lambda}{2} \|A\boldsymbol{\alpha}\|^2 - \boldsymbol{b}^T \boldsymbol{\alpha}$ s.t. $0 \le \alpha_i \le 1 \quad \forall i \in [n]$

- *n*-dim
- box-constrained
- smooth, not strongly convex

Structural SVM

``joint" feature map $\phi:\mathcal{X} imes\mathcal{Y} o\mathbb{R}^d$

large margin ``separation'' $\langle \boldsymbol{w}, \phi(\boldsymbol{x}_i, \boldsymbol{y}_i) - \phi(\boldsymbol{x}_i, \boldsymbol{y}) \rangle \geq L(\boldsymbol{y}, \boldsymbol{y}_i) - \xi_i$ $\forall \boldsymbol{y}$ 26.6 5 6 rimal problem: $lacksquare{\mathbf{5}}_{\lambda}{}_{\overline{2}}\left\|oldsymbol{w}
ight\|^{2}$ $\left\{ egin{aligned} & \mathbf{h}_{n} \sum \max_{oldsymbol{y} \in \mathcal{Y}} \left\{ L(oldsymbol{y}_{i},oldsymbol{y}) - \left\langle oldsymbol{w}, \ oldsymbol{\phi}(oldsymbol{x}_{i},oldsymbol{y}_{i}) - oldsymbol{\phi}(oldsymbol{x}_{i},oldsymbol{y}_{i}) - oldsymbol{\phi}(oldsymbol{x}_{i},oldsymbol{y}_{i})
ight
angle
ight\}$ (i, \boldsymbol{y}) -th column of A

Structural SVM

$\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$ `joint'' feature map

large margin ``separation'' $\langle \boldsymbol{w}, \phi(\boldsymbol{x}_i, \boldsymbol{y}_i) - \phi(\boldsymbol{x}_i, \boldsymbol{y}) \rangle \geq L(\boldsymbol{y}, \boldsymbol{y}_i) - \xi_i$ $\forall y$ \$CAREACTION &

 $w \in$

primal problem:

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{\lambda}{2} \|\boldsymbol{w}\|^2 \\ + \frac{1}{n} \sum_{i=1}^n \max_{\boldsymbol{y} \in \mathcal{Y}} \left\{ L(\boldsymbol{y}_i, \boldsymbol{y}) - \langle \boldsymbol{w}, \ \underbrace{\boldsymbol{\phi}(\boldsymbol{x}_i, \boldsymbol{y}_i) - \boldsymbol{\phi}(\boldsymbol{x}_i, \boldsymbol{y})}_{(i \ \boldsymbol{y}) \text{-th column of } A} \right\}$$

 $|\mathcal{Y}| = 26^{42}$ donaudampfschifffahrtsgesellschaftskapitän

decoding oracle

Binary SVM

primal

dual

$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{\frac{\lambda}{2} \|\boldsymbol{w}\|^2}{+\frac{1}{n} \sum_{i=1}^n \max\left\{0, 1 - \langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}_i) \boldsymbol{y}_i \rangle\right\}}_{i-\text{th column of } A}$

- *d*-dim
- unconstrained
- non-smooth, strongly convex

Optimization Algorithms

primal

batch (**n** cost per iteration)

online (**I** cost per iteration)

 stochastic subgradient (<u>SGD, Pegasos</u>) $\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \quad f(\boldsymbol{\alpha}) := \frac{\lambda}{2} \|A\boldsymbol{\alpha}\|^2 - \boldsymbol{b}^T \boldsymbol{\alpha}$ s.t. $0 \le \alpha_i \le 1 \quad \forall i \in [n]$

- *n*-dim
- box-constrained
- smooth, not strongly convex

dual

- Frank-Wolfe
 =cutting plane (SVM-light)
- coordinate descent (<u>Hsieh 2008</u>)
 =block-coordinate descent
 =block-coordinate Frank-Wolfe

Experimental Results

dataset		n	d
OCR	sequence labeling	625 I	4028
CoNLL	POS sequence labeling	8936	1643026
Matching	word alignment	5000	82

Co-Authors: Simon Lacoste-Julien, Mark Schmidt and Patrick Pletscher

> Block-Coordinate Frank-Wolfe Optimization for Structural SVMs Lacoste-Julien, S*., Jaggi, M*., Schmidt, M., & Pletscher, P. ICML 2013

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Jaggi, M. ICML 2013

Related Work

Table 1. Convergence rates given in the number of calls to the oracles for different optimization algorithms for the structural SVM objective (1) in the case of a Markov random field structure, to reach a specific accuracy ε measured for different types of gaps, in term of the number of training examples n, regularization parameter λ , size of the label space $|\mathcal{Y}|$, maximum feature norm $R := \max_{i, \mathbf{y}} \| \boldsymbol{\psi}_i(\mathbf{y}) \|_2$ (some minor terms were ignored for succinctness). Table inspired from (Zhang et al., 2011). Notice that only stochastic subgradient and our proposed algorithm have rates independent of n.

Optimization algorithm	Online	Primal/Dual	Type of guarantee	Oracle type	# Oracle calls
dual extragradient (Taskar et al., 2006)	no	primal-"dual"	saddle point gap	Bregman projection	$O\left(\frac{nR\log \mathcal{Y} }{\lambda\varepsilon}\right)$
online exponentiated gradient (Collins et al., 2008)	yes	dual	expected dual error	expectation	$O\left(\frac{(n+\log \mathcal{Y})R^2}{\lambda\varepsilon}\right)$
excessive gap reduction (Zhang et al., 2011)	no	primal-dual	duality gap	expectation	$O\left(nR\sqrt{rac{\log \mathcal{Y} }{\lambdaarepsilon}} ight)$
BMRM (Teo et al., 2010)	no	primal	\geq primal error	maximization	$O\left(\frac{nR^2}{\lambda\varepsilon}\right)$
1-slack SVM-Struct (Joachims et al., 2009)	no	primal-dual	duality gap	maximization	$O\left(\frac{nR^2}{\lambda\varepsilon}\right)$
stochastic subgradient (Shalev-Shwartz et al., 2010)	yes	primal	primal error w.h.p.	maximization	$\tilde{O}\left(\frac{R^2}{\lambda\varepsilon}\right)$
this paper: stochastic block- coordinate Frank-Wolfe	yes	primal-dual	expected duality gap	maximization	$O\left(\frac{R^2}{\lambda\varepsilon}\right)$ Thm. 3

Experimental Results (with averaging)

dataset		n	d
OCR	sequence labeling	625 I	4028
CoNLL	POS sequence labeling	8936	1643026
Matching	word alignment	5000	82

