Block-Coordinate Frank-Wolfe Optimization with applications to structured prediction

<u>Martin Jaggi</u> CMAP, Ecole Polytechnique XRCE Seminar 2012 / 11 / 13

Co-Authors: Simon Lacoste-Julien, Mark Schmidt and Patrick Pletscher

Outline

- Two Old First-Order Optimizers
 - Coordinate Descent
 - The Frank-Wolfe Algorithm
- Duality for Constrained Convex Optimization
- Block-Separable Problems
 - A new block-coordinate variant of Frank-Wolfe
- Applications: Large Margin Prediction
 - binary SVMs
 - structural SVMs

(for snowavalanche rescue)

Coordinate Descent

(for snowavalanche rescue)

Coordinate Descent

Coordinate Descent

(for snowavalanche rescue)

BEACON

Coordinate Descent

Selection of next coordinate:

- the one of steepest desc.
- **cycle** (hard to analyze!)
- random sampling

f

(x)

The Frank-Volfe Algorithm

Frank and Wolfe (1956)

 $\mathcal{D}\subset \mathbb{R}^d$

The Linearized Problem

$$\min_{\boldsymbol{s'}\in\mathcal{D}} f(\boldsymbol{x}) + \left< \boldsymbol{s'} - \boldsymbol{x}, \nabla f(\boldsymbol{x}) \right>$$

Algorithm 1: Frank-Wolfe Let $x^{(0)} \in \mathcal{D}$ for $k = 0 \dots K$ do Compute $s := \arg \min_{s' \in \mathcal{D}} \langle s', \nabla f(x^{(k)}) \rangle$ Let $\gamma := \frac{2}{k+2}$, or optimize γ by line-search Update $x^{(k+1)} := (1 - \gamma)x^{(k)} + \gamma s$ end

Theorem: Algorithm obtains **accuracy** $O(\frac{1}{k})$ after k steps.

 \mathbf{x}

 $\mathcal{D}\subset \mathbb{R}^d$

 \boldsymbol{x}

Some Examples of Atomic Domains Suitable for Frank-Wolfe

\mathcal{X}	Optimization Domain		Complexity of one Frank-Wolfe Iteration		
	Atoms \mathcal{A}	$\mathcal{D} = \operatorname{conv}(\mathcal{A})$	$ \sup_{oldsymbol{s}\in\mathcal{D}}\langleoldsymbol{s},oldsymbol{y} angle$	Complexity	
\mathbb{R}^n	Sparse Vectors	$\ .\ _1$ -ball	$\ oldsymbol{y}\ _{\infty}$	O(n)	
\mathbb{R}^n	Sign-Vectors	$\ .\ _{\infty}$ -ball	$\ oldsymbol{y}\ _1$	O(n)	
\mathbb{R}^n	ℓ_p -Sphere	$\ .\ _p$ -ball	$\ \boldsymbol{y} \ _q$	O(n)	
\mathbb{R}^n	Sparse Non-neg. Vectors	Simplex Δ_n	$\max_i \{ \boldsymbol{y}_i \}$	O(n)	
\mathbb{R}^n	Latent Group Sparse Vec.	$\ .\ _{\mathcal{G}}$ -ball	$\left\ \max_{g\in\mathcal{G}}\left\ \boldsymbol{y}_{(g)}\right\ _{g}^{*}\right\ $	$\sum_{g \in \mathcal{G}} g $	
$\boxed{\mathbb{R}^{m \times n}}$	Matrix Trace Norm	$\ .\ _{tr}$ -ball	$\ \boldsymbol{y}\ _{op} = \sigma_1(\boldsymbol{y})$	$\tilde{O}(N_f/\sqrt{\varepsilon'})$ (Lanczos)	
$\mathbb{R}^{m \times n}$	Matrix Operator Norm	$\ .\ _{op}$ -ball	$\ \boldsymbol{y}\ _{tr} = \ (\sigma_i(\boldsymbol{y}))\ _1$	SVD	
$\mathbb{R}^{m \times n}$	Schatten Matrix Norms	$\ (\sigma_i(.))\ _p$ -ball	$\ \ (\sigma_i(\boldsymbol{y})) \ _q$	SVD	
$\mathbb{R}^{m \times n}$	Matrix Max-Norm	$\ .\ _{\max}$ -ball		$\tilde{O}(N_f(n+m)^{1.5}/\varepsilon'^{2.5})$	
$\boxed{\mathbb{R}^{n \times n}}$	Permutation Matrices	Birkhoff polytope		$O(n^3)$	
$\mathbb{R}^{n \times n}$	Rotation Matrices		8	SVD (Procrustes prob.)	
$\mathbb{S}^{n \times n}$	Rank-1 PSD matrices of unit trace	$\{\boldsymbol{x} \succeq 0, \operatorname{Tr}(\boldsymbol{x}) = 1\}$	$\lambda_{\max}(oldsymbol{y})$	$\tilde{O}(N_f/\sqrt{\varepsilon'})$ (Lanczos)	
$\mathbb{S}^{n \times n}$	PSD matrices of bounded diagonal	$\{ \boldsymbol{x} \succeq 0, \ \boldsymbol{x}_{ii} \leq 1 \}$		$ ilde{O}(N_f n^{1.5}/arepsilon'^{2.5})$	

Table 1: Some examples of atomic domains suitable for optimization using the Frank-Wolfe algorithm. Here SVD refers to the complexity of computing a singular value decomposition, which is $O(\min\{mn^2, m^2n\})$. N_f is the number of non-zero entries in the gradient of the objective function f. and $\varepsilon' = \frac{2\delta C_f}{2}$ is the required accuracy for the linear subproblems. For any $p \in [1, \infty]$

the conjugate value a is meant to satisfy

A Simple Alternative Optimization Duality

The Problem

 $\min_{x \in D} f(x)$

The Dual

 $\omega(x) := \min_{\substack{\boldsymbol{y} \in D}} f(x) + \langle \boldsymbol{y} - x, d_x \rangle$

Weak Duality $\omega(x) \le f(x^*) \le f(x')$

Block-Separable Optimization Problems

domain is a product of *n* blocks

 $\min_{\boldsymbol{x}\in\mathcal{D}^{(1)}\times\cdots\times\mathcal{D}^{(n)}}f(\boldsymbol{x})$ $\boldsymbol{x} = (\boldsymbol{x}_{(1)}, \dots, \boldsymbol{x}_{(n)})$

Algorithm 2: Uniform Coordinate DescentAlgorithm 3: BloLet $x^{(0)} \in \mathcal{D}$ for $k = 0 \dots K$ dofor $k = 0 \dots K$ doPick $i \in u.a.r.$ [n]Compute $s_{(i)} := \arg \min_{s_{(i)} \in \mathcal{D}^{(i)}} \left\langle s_{(i)}, \nabla_{(i)} f(x^{(k)}) \right\rangle + \frac{L_i}{2} ||s_{(i)} - x_{(i)}||^2$ Update $x_{(i)}^{(k+1)} := x_{(i)}^{(k)} + (s_{(i)} - x_{(i)}^{(k)})$ end

<u>Nesterov (2012)</u> ``Huge-Scale" Coordinate Descent. J. Opt

Theorem:
Algorithm obtains
accuracy
$$O\Big(\frac{2n}{k+2n}$$

after k steps.

Algorithm 3: Block-Coordinate "Frank-Wolfe" Let $\boldsymbol{x}^{(0)} \in \mathcal{D}$ for $k = 0 \dots K$ do Pick $i \in_{u.a.r.} [n]$ Compute $\boldsymbol{s}_{(i)} := \operatorname*{arg\,min}_{\boldsymbol{s}_{(i)} \in \mathcal{D}^{(i)}} \left\langle \boldsymbol{s}_{(i)}, \nabla_{(i)} f(\boldsymbol{x}^{(k)}) \right\rangle$ Let $\gamma := \frac{2n}{k+2n}$, or optimize γ by line-search Update $\boldsymbol{x}^{(k+1)}_{(i)} := \boldsymbol{x}^{(k)}_{(i)} + \gamma \left(\boldsymbol{s}_{(i)} - \boldsymbol{x}^{(k)}_{(i)} \right)$ end

> Hidden constant: **Curvature** $\leq \sum_{i} L_{f} diam^{2}(\mathcal{D}^{(i)})$

(also in **duality gap**, and with **inexact subproblems**)

our <u>arXiv</u> <u>þaper</u>

Applications: Large Margin Prediction

 Binary Support Vector Machine (no bias) 8 • also: Ranking SVM 2006 3 5 2 6 1 6 0 3 4 5 3 $\langle w, \phi(x_i) y_i
angle \geq 1 - \xi_i$ 0 46320212 O 6 2 2 32 D B C primal problem: **1 8 15 11 25 1** $\min_{\boldsymbol{w}} \quad \frac{\lambda}{2} \|\boldsymbol{w}\|^2$ $+rac{1}{n}\sum^{n}\max\left\{0,1-\left\langleoldsymbol{w},oldsymbol{\phi}(oldsymbol{x}_{i})\,oldsymbol{y}_{i}
ight
angle
ight\}$ 1 1 3 3l

$\begin{array}{c} 1 & 1 & 1 & 3 & 2 & 0 & 6 & 9 & 3 \\ 8 & 2 & 6 & 16 & 0 & 3 & 45 & 3 & 0 \\ 1 & 0 & 4 & 0 & 3 & 2 & 0 & 2^{(\gamma, \phi_{x}), \psi_{x}} & 0 & 2^{1} & 6^{\xi_{i}} \\ 0 & 2 & 2 & 3 & 1 & 0 & 0 & 1 & 5 \\ 3 & 1 & 8 & 1 & 0 & 1 & 1 & 2 & 5 \\ 1 & 1 & 2 & 1 & 3 & 5 \\ 1 & 1 & 2 & 1 & 3 & 5 \\ \end{array}$

Binary SVM

primal

$$\begin{split} \min_{\boldsymbol{w}} \quad & \frac{\lambda}{2} \|\boldsymbol{w}\|^2 \\ & + \frac{1}{n} \sum_{i=1}^n \max\left\{0, 1 - \langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}_i) \, \boldsymbol{y}_i \rangle\right\} \end{split}$$

- d-dim
- non-smooth, strongly convex
- unconstrained

- *n*-dim
- smooth
- box-constrained

Structural SVM

``joint'' feature map $\phi:\mathcal{X} imes\mathcal{Y} o\mathbb{R}^d$

large margin ``separation'' $\langle \boldsymbol{w}, \phi(\boldsymbol{x}_i, \boldsymbol{y}_i) - \phi(\boldsymbol{x}_i, \boldsymbol{y}) \rangle \geq L(\boldsymbol{y}, \boldsymbol{y}_i) - \xi_i$ $\forall y$ 26.6 5 6 8 primal problem: $\mathbf{1} \frac{\mathbf{5} \lambda}{2} \left\| \boldsymbol{w} \right\|^2$ $\begin{bmatrix} \mathbf{J}_{i} \\ \mathbf{J}_{i=1} \end{bmatrix} \max_{\boldsymbol{y} \in \mathcal{Y}} \left\{ L(\boldsymbol{y}, \boldsymbol{y}_{i}) - \left\langle \boldsymbol{w}, \boldsymbol{\psi}(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) - \boldsymbol{\phi}(\boldsymbol{x}_{i}, \boldsymbol{y}) \right\rangle \right\}$ 5 $=: \boldsymbol{\psi}_i(\boldsymbol{y})$ loss-augmented decoding

Binary SVM

primal

$$\min_{\boldsymbol{w}} \quad \frac{\lambda}{2} \|\boldsymbol{w}\|^2 \\ + \frac{1}{n} \sum_{i=1}^n \max\left\{0, 1 - \langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}_i) \, \boldsymbol{y}_i \rangle\right\}$$

Structural SVM

primal

$$egin{aligned} & \min_{oldsymbol{w}} \quad rac{\lambda}{2} \left\|oldsymbol{w}
ight\|^2 \ & +rac{1}{n} \sum_{i=1}^n \max_{oldsymbol{y} \in \mathcal{Y}} \left\{ L(oldsymbol{y},oldsymbol{y}_i) - ig\langle oldsymbol{w}, \ oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i) - oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i) - oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i) - oldsymbol{\psi}(oldsymbol{x}_i,oldsymbol{y}_i) - oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i) - oldsymbol{\psi}(oldsymbol{x}_i,oldsymbol{y}_i) - oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i) - oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i,oldsymbol{y}_i) - oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i) - oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i,oldsymbol{y}_i) - oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i,oldsymbol{y}_i) - oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i,oldsymbol{y}_i) - oldsymbol{\phi}(oldsymbol{x}_i,oldsymbol{y}_i,oldsymbol{y}_i,oldsymbol{y}_i,oldsymbol{y}_i,oldsymbol{y}_i,oldsymbol{y}_i,olds$$

dual

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{n}} f(\boldsymbol{\alpha}) := \frac{\lambda}{2} \left\| \sum_{i \in [n]} \alpha_{i} \frac{\boldsymbol{\phi}(\boldsymbol{x}_{i}) \, \boldsymbol{y}_{i}}{\lambda n} \right\|^{2} - \sum_{i \in [n]} \frac{\alpha_{i}}{n} = \mathbf{w} = A\boldsymbol{\alpha} = \mathbf{w} = \mathbf{h}^{T} \boldsymbol{\alpha}$$
s.t. $0 \le \alpha_{i} \le 1 \quad \forall i \in [n]$.

dual

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{n \cdot |\mathcal{Y}|}} f(\boldsymbol{\alpha}) := \frac{\lambda}{2} \left\| \sum_{\substack{i \in [n], \\ \boldsymbol{y} \in \mathcal{Y}}} \alpha_i(\boldsymbol{y}) \frac{\boldsymbol{\psi}_i(\boldsymbol{y})}{\lambda n} \right\|^2 - \sum_{\substack{i \in [n], \\ \boldsymbol{y} \in \mathcal{Y}}} \alpha_i(\boldsymbol{y}) \frac{L(\boldsymbol{y}, \boldsymbol{y}_i)}{n} \\ =: \boldsymbol{w} = A \boldsymbol{\alpha} \qquad =: \boldsymbol{b}^T \boldsymbol{\alpha} \\ \text{s.t.} \quad \sum_{\boldsymbol{y} \in \mathcal{Y}} \alpha_i(\boldsymbol{y}) = 1 \quad \forall i \in [n] \\ \text{and} \quad \alpha_i(\boldsymbol{y}) \ge 0 \quad \forall i \in [n], \forall \boldsymbol{y} \in \mathcal{Y}. \end{cases}$$

$463/202w, a(x_i) \ge 1-\xi_i$ Ø 0 2 2 32 1D 860 1 5 Binary SVM 3 1 81511257 3als $= \min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \mathbf{T}(\boldsymbol{\alpha}) :=$ 11

primal

$$\min_{\boldsymbol{w}} \quad \frac{\lambda}{2} \|\boldsymbol{w}\|^2 \\ + \frac{1}{n} \sum_{i=1}^n \max\left\{0, 1 - \langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}_i) \, \boldsymbol{y}_i \rangle\right\}$$

- d-dim
- unconstrained
- non-smooth, strongly convex

Optimization Algorithms

- *n*-dim
- box-constrained
- smooth

	primal	dual
batch	subgradient descentbundle methods	 Frank-Wolfe cutting planes (SVM-light)
online	 stochastic subgradient (<u>SGD, Pegasos</u>) 	 coordinate descent (<u>Hsieh, LibLinear</u>) _ a, √f^(a)) block-coordinate Frank-Wolfe_{f(a)} + (^s) _ a, √f^(a))

Experimental Results

dataset		n	d
OCR	sequence labeling	625 I	4028
CoNLL	POS sequence labeling	8936	1643026
Matching	word alignment	5000	82

Related Work

Table 1. Convergence rates given in the number of calls to the oracles for different optimization algorithms for the structural SVM objective (1) in the case of a Markov random field structure, to reach a specific accuracy ε measured for different types of gaps, in term of the number of training examples n, regularization parameter λ , size of the label space $|\mathcal{Y}|$, maximum feature norm $R := \max_{i, \mathbf{y}} \| \boldsymbol{\psi}_i(\mathbf{y}) \|_2$ (some minor terms were ignored for succinctness). Table inspired from (Zhang et al., 2011). Notice that only stochastic subgradient and our proposed algorithm have rates independent of n.

Optimization algorithm	Online	Primal/Dual	Type of guarantee	Oracle type	# Oracle calls
dual extragradient (Taskar et al., 2006)	no	primal-"dual"	saddle point gap	Bregman projection	$O\left(\frac{nR\log \mathcal{Y} }{\lambda\varepsilon}\right)$
online exponentiated gradient (Collins et al., 2008)	yes	dual	expected dual error	expectation	$O\left(\frac{(n+\log \mathcal{Y})R^2}{\lambda\varepsilon}\right)$
excessive gap reduction (Zhang et al., 2011)	no	primal-dual	duality gap	expectation	$O\left(nR\sqrt{rac{\log \mathcal{Y} }{\lambdaarepsilon}} ight)$
BMRM (Teo et al., 2010)	no	primal	\geq primal error	maximization	$O\left(\frac{nR^2}{\lambda\varepsilon}\right)$
1-slack SVM-Struct (Joachims et al., 2009)	no	primal-dual	duality gap	maximization	$O\left(\frac{nR^2}{\lambda\varepsilon}\right)$
stochastic subgradient (Shalev-Shwartz et al., 2010)	yes	primal	primal error w.h.p.	maximization	$\tilde{O}\left(\frac{R^2}{\lambda\varepsilon}\right)$
this paper: stochastic block- coordinate Frank-Wolfe	yes	primal-dual	expected duality gap	maximization	$O\left(\frac{R^2}{\lambda \varepsilon}\right)$ Thm. 3

Experimental Results (w/ averaging)

dataset		n	d
OCR	sequence labeling	625 I	4028
CoNLL	POS sequence labeling	8936	1643026
Matching	word alignment	5000	82

Frank-Wolfe: History & Related Work

	Domain	Known Stepsize	Арргох. Subproblem	Primal-Dual Guarantee
Frank & Wolfe 1956	linear inequality constraints	×	×	×
Dunn 1978, 1980	general bounded convex domain	×	\checkmark	×
Zhang 2003	convex hulls	×	\checkmark	×
Clarkson 2008, 2010	unit simplex	\checkmark	X	\checkmark
Hazan 2008	semidefinite matrices of bounded trace	\checkmark	\checkmark	\checkmark
J. PhD Thesis	general bounded convex domain	\checkmark	\checkmark	\checkmark