
Block-Coordinate
Frank-Wolfe Optimization

Martin Jaggi
CMAP, Ecole Polytechnique

XRCE Seminar 2012 / 11 / 13

with applications to structured prediction

Co-Authors: Simon Lacoste-Julien, Mark Schmidt and Patrick Pletscher

http://www.cmap.polytechnique.fr/~jaggi/
http://www.cmap.polytechnique.fr/~jaggi/
http://www.di.ens.fr/~slacoste
http://www.di.ens.fr/~slacoste
http://www.di.ens.fr/~mschmidt
http://www.di.ens.fr/~mschmidt
http://www.pletscher.org/
http://www.pletscher.org/

• Two Old First-Order Optimizers

• Coordinate Descent

• The Frank-Wolfe Algorithm

• Duality for Constrained Convex Optimization

• Block-Separable Problems

• A new block-coordinate variant of Frank-Wolfe

• Applications: Large Margin Prediction

• binary SVMs

• structural SVMs

Outline

Coordinate Descent
(for snow-
avalanche
rescue)

Coordinate Descent
(for snow-
avalanche
rescue)

Coordinate Descent
(for snow-
avalanche
rescue)

Rd

Coordinate
Descent

f(x)

x

Selection of next coordinate:

• the one of steepest desc.

• cycle (hard to analyze!)

• random sampling

The
Frank-
Wolfe
Algorithm

Frank and Wolfe (1956)

D ⇢ Rd

http://dx.doi.org/10.1002/nav.3800030109
http://dx.doi.org/10.1002/nav.3800030109

min
x2D

f(x)

D ⇢ Rd

f(x)

x

min
x2D

f(x)

D ⇢ Rd

f(x)

x

min
x2D

f(x)

D ⇢ Rd

f(x)

x

min
x2D

f(x)

D ⇢ Rd

f(x)

x

The Linearized Problem

Theorem:
Algorithm obtains
accuracy
after steps.

O
�
1
k

�

k

Cheaper Block Coordinate Descent
A Convergence Analysis of Frank-Wolfe-Type Updates For Product Domains

Martin Jaggi
jaggi@cmap.polytechnique.fr

Algorithm 1: Frank-Wolfe

Let x(0) 2 D
for k = 0 . . .K do

Compute s := argmin
s

02D

D
s

0,rf(x(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update x

(k+1) := (1� �)x(k) + �s

end

Coordinate Descent Methods. Despite their simplicity and very early appearance in the lit-
erature, surprisingly few results were known on the convergence (and convergence rates in par-
ticular) of coordinate descent type methods. Recently, the interest in these methods has grown
again due to their good scalability to very large scale problems as e.g. in machine learning, and
also sparked new theoretical results such as [Nes12].

Constrained Convex Optimization over Product Domains. We consider general constrained
convex optimization

min
x2D

f(x) (1)

over a Cartesian product domain D = D(1) ⇥ . . . ⇥ D(n) ✓ Rm, where each factor D(i) ✓ Rmi

is convex and compact, and
Pn

i=1mi = m. We will write x(i) 2 Rmi for the i-th block of
coordinates of a vector x 2 Rm, and x[i] for the zero-padding of x(i) so that x[i] 2 Rm

Nesterov’s “Huge Scale” Coordinate Descent. If the objective function f is strongly smooth
(i.e. has Lipschitz continuous partial gradients r(i)f(x) 2 Rmi), then the following algorithm

1

min
s02D

f(x) +
⌦
s

0 � x,rf(x)
↵

s D ⇢ Rd

f(x)

x

The Linearized Problem

D ⇢ Rd

min
s02D

f(x) +
⌦
s

0 � x,rf(x)
↵

f(x)

x

rf
(x
)

Frank-Wolfe Gradient Descent

Cost per step

Sparse / Low
Rank Solutions

Convergence

Approx. solve
linearized problem on D

Projection back to D

✓
(depending on the domain)

✗

1/k 1/k

Some Examples of Atomic Domains Suitable for Frank-Wolfe

X Optimization Domain Complexity of one Frank-Wolfe Iteration
Atoms A D = conv(A) sup

s2Dhs, yi Complexity

Rn Sparse Vectors k.k
1

-ball kyk1 O(n)
Rn Sign-Vectors k.k1-ball kyk

1

O(n)
Rn `

p

-Sphere k.k
p

-ball kyk
q

O(n)
Rn Sparse Non-neg. Vectors Simplex �

n

max
i

{y

i

} O(n)
Rn Latent Group Sparse Vec. k.kG-ball max

g2G
�

�

y

(g)

�

�

⇤
g

P

g2G |g|
Rm⇥n Matrix Trace Norm k.k

tr

-ball kyk
op

= �
1

(y) Õ
�

N
f

/
p

"0
�

(Lanczos)
Rm⇥n Matrix Operator Norm k.k

op

-ball kyk
tr

= k(�
i

(y))k
1

SVD
Rm⇥n Schatten Matrix Norms k(�

i

(.))k
p

-ball k(�
i

(y))k
q

SVD

Rm⇥n Matrix Max-Norm k.k
max

-ball Õ
�

N
f

(n + m)1.5/"02.5
�

Rn⇥n Permutation Matrices Birkho↵ polytope O(n3)
Rn⇥n Rotation Matrices SVD (Procrustes prob.)
Sn⇥n

Rank-1 PSD matrices

of unit trace

{x⌫0, Tr(x)=1} �
max

(y) Õ
�

N
f

/
p

"0
�

(Lanczos)
Sn⇥n

PSD matrices

of bounded diagonal

{x⌫0, xii1} Õ
�

N
f

n1.5/"02.5
�

Table 1: Some examples of atomic domains suitable for optimization using the Frank-Wolfe algorithm.
Here SVD refers to the complexity of computing a singular value decomposition, which is
O(min{mn2, m2n}). N

f

is the number of non-zero entries in the gradient of the objective func-

tion f , and "0 = 2�Cf

k+2

is the required accuracy for the linear subproblems. For any p 2 [1, 1],

the conjugate value q is meant to satisfy 1

p

+ 1

q

= 1, allowing q = 1 for p = 1 and vice versa.

turn out to be such problem instances. Clearly, every iteration will add at most one new non-
zero coordinate to x, and the linear subproblems consist of finding the largest entry of the
gradient.

The resulting trade-o↵ between the sparsity and the approximation quality is interesting. Our
above sparsity lower bounds from Lemmata 4 and 5 together with the upper bounds of O

�

1

"

�

from the convergence analysis show that the sparsity of the Frank-Wolfe iterates is indeed best
possible in terms of both primal an dual approximation quality. For optimizing over the simplex,
this trade-o↵ was also considered by [GJ09, Cla10], and by [SSSZ10] for the `

1

-ball (considering
primal error).

The `
p

-Ball. An exact Frank-Wolfe iteration only costs linear time when optimizing over any
`
p

-ball domain D, for p 2 [1, 1]. This follows by the duality of the `
p

and `
q

-norms, as in
Hölder’s inequality hs, yi ksk

p

· kyk
q

(for p, q 2 [1, 1], 1

p

+ 1

q

= 1, allowing q = 1 for p = 1
and vice versa). An optimal solution s to the linear problem max

ˆ

s, kˆsk
p

1

ŝ

T

y can simply be

obtained from y by choosing |s
i

| / |y
i

|q�1, keeping the same signs. This also holds for the case
p = 1, q = 1, where the domain D becomes the cube.

Structured Atomic Norms. In recent years, structured norms have gained strong interest in
several areas of machine learning, computer vision, and signal processing, due to their ability
to induce more general and structured notions of sparsity, see e.g. [JAB11] for an overview.

Here we will focus on one large class of structured norms, proposed by [OJV11], which due
to the atomic structure is particularly suitable to be used with the Frank-Wolfe algorithm.
Let G be a finite collection of groups of indices g ✓ [n] (which are allowed to over-lap), and
S

g2G g = [n]. For each group g, we choose an arbitrary norm k.k
g

, which acts only on the

coordinates belonging to g, i.e. on R|g|. For any v 2 Rn and g ✓ [n], we write v

[g]

2 Rn

for the vector coinciding with v in the coordinates in group g, and being zero elsewhere, i.e.
supp(v

[g]

) ✓ g. The same vector when restricted to these coordinates is written as v

(g)

2 R|g|.
In this setting, a slight generalization of the latent group norm [OJV11] is given by

kxkG := min
v(g)2R|g|

P

g2G
�

�

v

(g)

�

�

g

s.t. x =
P

g2G v

[g]

.

It is known [OJV11] that this norm is an atomic norm (and a norm), with the atoms A =

9

Jaggi (2013)

http://m8j.net/math/revisited-FW.pdf
http://m8j.net/math/revisited-FW.pdf

x

f(x)
gap(x)

The Problem

min
x2D

f(x)

A Simple Alternative Optimization Duality

Weak Duality

!(x) f(x⇤) f(x0)

The Dual

�(x) :=

min
y2D

f(x) + hy � x, d

x

i

!(x)

D 2 Rd

Block-Separable Optimization Problems

min
x2D(1)⇥···⇥D(n)

f(x)

x = (x(1), . . . ,x(n))

f(x)

D(i) 2 Rdi

x(i)

⇥ ⇥ · · ·⇥
f(x)

D(1) 2 Rd1

x(1)

f(x)

D(n) 2 Rdn

x(n)

domain is a
product of
n blocks

converges1 at a rate of 1
k , or more precisely n

k+n , as shown in [Nes12, Section 4]:

Algorithm 2: Uniform Coordinate Descent

Let x(0) 2 D
for k = 0 . . .K do

Pick i 2u.a.r. [n]

Compute s(i) := argmin
s

(i)2D(i)

D
s(i),r(i)f(x

(k))
E

+Li
2

��
s(i) � x(i)

��2

Update x

(k+1)
(i) := x

(k)
(i) +

�
s(i) � x

(k)
(i)

�

end

Using Simpler Update Steps: Frank-Wolfe / Conditional Gradient Methods. In some large-
scale applications, the above computation of the update direction s(i) can be problematic, e.g.
if the Lipschitz constants Li are unknown, or —more importantly— if the domains D(i) are such
that the quadratic term makes the subproblem for s(i) hard to solve.

The structural SVM is a nice example where this makes a big di↵erence. Here, each domain
factor D(i) is a simplex of exponentially many variables, but nevertheless the linear subproblem
over one such factor (also known as loss-augmented decoding) is often relatively easy to solve.

We would therefore like to replace the above computation of s(i) by a simpler one, as proposed
in the following algorithm variant:

Algorithm 3: Block-Coordinate “Frank-Wolfe”

Let x(0) 2 D
for k = 0 . . .K do

Pick i 2u.a.r. [n]

Compute s(i) := argmin
s

(i)2D(i)

D
s(i),r(i)f(x

(k))
E

Let � := 2n
k+2n , or optimize � by line-search

Update x

(k+1)
(i) := x

(k)
(i) + �

�
s(i) � x

(k)
(i)

�

end

This natural coordinate descent type optimization method picks a single one of the n factors
uniformly at random, and in each step leaves all other factors unchanged.

If there is only one factor (n = 1), then Algorithm 3 becomes the standard Frank-Wolfe (or
conditional gradient) algorithm [FW56], which is known to converge2 at a rate of O(1/k).

Related Work. In contrast to the randomized choice of coordinate which we use here, the
analysis of cyclic coordinate descent algorithms (going through the factors sequentially) seems
to be notoriously di�cult, such that until today, no analysis proving a convergence rate is
known. For product domains, such a cyclic analogue of our Algorithm 3 has already been
proposed in [Pat98], using a generalization of Frank-Wolfe iterations under the name “cost
approximation”. The analysis of [Pat98] shows asymptotic convergence, but since the method
goes through the factors sequentially, no convergence rates could be proven so far.

1

By additionally assuming strong convexity of f w.r.t. the `
1

-norm (global on D, not only on the individual

factors), one can even obtain linear convergence rates, see again [Nes12] and the follow-up paper [RT11].

2

This convergence analysis is usually done using the fact that in each step, the primal error is reduced by a

constant times the squared duality gap, see e.g. [FW56, Jag11]

2

Theorem:
Algorithm obtains
accuracy

after steps.k
O
�

2n
k+2n

�
Nesterov (2012)

``Huge-Scale’’ Coordinate
Descent. J. Opt

⇥ ⇥ · · ·⇥
f(x)

x(i)

f(x)

x(1)

f(x)

x(n)

f(x)

x(i)

f(x)

x(1)

f(x)

x(n)

⇥ · · ·⇥⇥

converges1 at a rate of 1
k , or more precisely n

k+n , as shown in [Nes12, Section 4]:

Algorithm 2: Uniform Coordinate Descent [Nes12]

Let x(0) 2 D
for k = 0 . . .K do

Pick i 2u.a.r. [n]

Compute s(i) := argmin
s

(i)2D(i)

D
s(i),r(i)f(x

(k))
E

+Li
2

��
s(i) � x(i)

��2

Update x

(k+1)
(i) := x

(k)
(i) +

�
s(i) � x

(k)
(i)

�

end

Using Simpler Update Steps: Frank-Wolfe / Conditional Gradient Methods. In some large-
scale applications, the above computation of the update direction s(i) can be problematic, e.g.
if the Lipschitz constants Li are unknown, or —more importantly— if the domains D(i) are such
that the quadratic term makes the subproblem for s(i) hard to solve.

The structural SVM is a nice example where this makes a big di↵erence. Here, each domain
factor D(i) is a simplex of exponentially many variables, but nevertheless the linear subproblem
over one such factor (also known as loss-augmented decoding) is often relatively easy to solve.

We would therefore like to replace the above computation of s(i) by a simpler one, as proposed
in the following algorithm variant:

Algorithm 3: Block-Coordinate “Frank-Wolfe”

Let x(0) 2 D
for k = 0 . . .K do

Pick i 2u.a.r. [n]

Compute s(i) := argmin
s

(i)2D(i)

D
s(i),r(i)f(x

(k))
E

Let � := 2n
k+2n , or optimize � by line-search

Update x

(k+1)
(i) := x

(k)
(i) + �

�
s(i) � x

(k)
(i)

�

end

This natural coordinate descent type optimization method picks a single one of the n factors
uniformly at random, and in each step leaves all other factors unchanged.

If there is only one factor (n = 1), then Algorithm 3 becomes the standard Frank-Wolfe (or
conditional gradient) algorithm [FW56], which is known to converge2 at a rate of O(1/k).

Related Work. In contrast to the randomized choice of coordinate which we use here, the
analysis of cyclic coordinate descent algorithms (going through the factors sequentially) seems
to be notoriously di�cult, such that until today, no analysis proving a convergence rate is
known. For product domains, such a cyclic analogue of our Algorithm 3 has already been
proposed in [Pat98], using a generalization of Frank-Wolfe iterations under the name “cost
approximation”. The analysis of [Pat98] shows asymptotic convergence, but since the method
goes through the factors sequentially, no convergence rates could be proven so far.

1

By additionally assuming strong convexity of f w.r.t. the `
1

-norm (global on D, not only on the individual

factors), one can even obtain linear convergence rates, see again [Nes12] and the follow-up paper [RT11].

2

This convergence analysis is usually done using the fact that in each step, the primal error is reduced by a

constant times the squared duality gap, see e.g. [FW56, Jag11]

2

our
arXiv
paper

Hidden constant:
Curvature

P
i Lf diam

2(D(i))

(also in duality gap,
and with inexact
subproblems)

http://dx.doi.org/10.1137/100802001
http://dx.doi.org/10.1137/100802001
http://arxiv.org/abs/1207.4747
http://arxiv.org/abs/1207.4747
http://arxiv.org/abs/1207.4747
http://arxiv.org/abs/1207.4747

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Applications: Large Margin Prediction

• Binary Support Vector Machine
 (no bias)

• also: Ranking SVM

⌦
w,�(xi)yi

↵
� 1� ⇠i

primal problem:

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
n

0, 1 �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
y2Y

n

L(y, yi) �
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=

�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. 0 ↵i 1 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =

�ATA↵ � b = �AT
w � b. Finally, note that the do-

main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

Binary SVM

primal

• d-dim

• non-smooth, strongly convex

• unconstrained

dual

• n-dim

• smooth

• box-constrained

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
n

�1, �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
y2Y

n

L(y, yi) �
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=

�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. 0 ↵i 1 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =

�ATA↵ � b = �AT
w � b. Finally, note that the do-

main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

⌦
w,�(xi)yi

↵
� 1� ⇠i

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
n

0, 1 �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
y2Y

n

L(y, yi) �
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=

�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. 0 ↵i 1 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =

�ATA↵ � b = �AT
w � b. Finally, note that the do-

main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(,2)

Structural SVM

� : X ⇥ Y ! Rd``joint’’ feature map

primal problem:

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
n

�1, �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
y2Y

n

L(y, yi) �
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=

�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. ↵i � 0 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =

�ATA↵ � b = �AT
w � b. Finally, note that the do-

main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

large margin ``separation’’⌦
w,�(xi,yi)� �(xi,y)

↵
� L(y,yi)� ⇠i 8y

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(,1)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(,0)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(,3)Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(,4)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(,7)

loss-augmented decoding

Binary SVM

Structural SVM

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
n

�1, �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
y2Y

n

L(y, yi) �
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=

�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. ↵i � 0 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =

�ATA↵ � b = �AT
w � b. Finally, note that the do-

main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

primal

primal

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2 +

1

n

n
X

i=1

max
n

�1, �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2+ 1

n

n
X

i=1

max
y2Y

n

L(y, yi)�
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=
�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. ↵i � 0 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =
�ATA↵ � b = �AT

w � b. Finally, note that the do-
main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-
ity gap as a certificate for the current approximation
quality (Jaggi, 2011), allowing us to monitor the con-
vergence, and more importantly to choose the theoret-
ically sound stopping criterion g(↵(k)) ".

In terms of convergence, it is known that after O(1/")

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

dual

dual

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
n

�1, �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
y2Y

n

L(y, yi) �
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=

�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. 0 ↵i 1 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =

�ATA↵ � b = �AT
w � b. Finally, note that the do-

main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
n

0, 1 �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
y2Y

n

L(y, yi) �
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=

�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. 0 ↵i 1 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =

�ATA↵ � b = �AT
w � b. Finally, note that the do-

main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

Binary SVM

primal

dual

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
n

�1, �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
y2Y

n

L(y, yi) �
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=

�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. 0 ↵i 1 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =

�ATA↵ � b = �AT
w � b. Finally, note that the do-

main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

⌦
w,�(xi)yi

↵
� 1� ⇠i

Optimization Algorithms
primal dual

batch • subgradient descent
• bundle methods

• Frank-Wolfe
• cutting planes (SVM-light)

online • stochastic subgradient
(SGD, Pegasos)

• coordinate descent (Hsieh, LibLinear)
• block-coordinate Frank-Wolfe

• n-dim
• box-constrained
• smooth

• d-dim
• unconstrained
• non-smooth, strongly convex

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
n

0, 1 �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
y2Y

n

L(y, yi) �
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=

�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. 0 ↵i 1 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =

�ATA↵ � b = �AT
w � b. Finally, note that the do-

main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

http://dx.doi.org/10.1007/s10107-010-0420-4
http://dx.doi.org/10.1007/s10107-010-0420-4
http://dx.doi.org/10.1145/1390156.1390208
http://dx.doi.org/10.1145/1390156.1390208

Structural SVM

primal

dual

Optimization Algorithms
primal dual

batch • subgradient descent
• bundle methods

• Frank-Wolfe
• cutting planes (SVM-struct)

online • stochastic subgradient
(SGD, Pegasos)

• block coordinate descent (Nesterov)
• block-coordinate Frank-Wolfe

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2 +

1

n

n
X

i=1

max
n

�1, �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2+ 1

n

n
X

i=1

max
y2Y

n

L(y, yi)�
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=
�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. ↵i � 0 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =
�ATA↵ � b = �AT

w � b. Finally, note that the do-
main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-
ity gap as a certificate for the current approximation
quality (Jaggi, 2011), allowing us to monitor the con-
vergence, and more importantly to choose the theoret-
ically sound stopping criterion g(↵(k)) ".

In terms of convergence, it is known that after O(1/")

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

3. some formulations to copy to the
slides

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
n

�1, �
⌦

w,�(xi) yi

↵

o

min
w

�

2
kwk2

+
1

n

n
X

i=1

max
y2Y

n

L(y, yi) �
⌦

w, �(xi, yi) � �(xi, y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-
formulation (1) has m :=

P

i |Yi| variables or potential
“support vectors”. Writing ↵i(y) for the dual variable
associated with the training example i and potential
output y 2 Yi, the dual problem is given by

min
↵2Rn

f(↵) :=

�

2

�

�

�

�

X

i2[n]

↵i
�(xi) yi

�n
| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n]

↵i

n
| {z }

=: b

T
↵

s.t. ↵i � 0 8i 2 [n] .

min
↵2Rn·|Y|

f(↵) :=

�

2

�

�

�

�

X

i2[n],
y2Y

↵i(y)
 i(y)

�n

| {z }

=: w=A↵

�

�

�

�

2

�
X

i2[n],
y2Y

↵i(y)
L(y, yi)

n

| {z }

=: b

T
↵

s.t.
P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y.

Given a dual variable vector ↵, we can use the Karush-
Kuhn-Tucker optimality conditions to obtain the cor-
responding primal variables w =

P

i,y2Yi
↵i(y) i(y)

�n ,
see Appendix A.

To simplify notation, we introduce the matrix
A 2 Rd⇥m consisting of the m columns A :=
�

1
�n i(y) 2 Rd

�

� i 2 [n], y 2 Yi

. Using A, our
primal-dual correspondence between w and ↵ is sim-
ply w = A↵ . Further, the dual objective (??) simpli-
fies to f(↵) := �

2 kA↵k2 � b

T
↵ = �

2 kwk2 � b

T
↵ for

the fixed vector b 2 Rm with b :=
�

1
nLi(y)

�

i2[n],y2Yi
.

The gradient of f(↵) takes the simple form rf(↵) =

�ATA↵ � b = �AT
w � b. Finally, note that the do-

main M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y1| ⇥ . . . ⇥ �|Yn|.

4. The Frank-Wolfe Algorithm

We consider the convex optimization problem
min

↵2M f(↵), where the convex feasible set M is
compact and the convex objective f is continuously dif-
ferentiable. The Frank-Wolfe algorithm (1956) (listed
in Algorithm 1) is an iterative optimization algo-
rithm for such problems that only requires optimiz-
ing linear functions over M, and thus has wider ap-
plicability than projected gradient algorithms, which
require optimizing a quadratic function over M.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate ↵ (see picture in inset).

↵

f(↵)

M

f

s

f(↵) +
⌦

s

� � ↵

,rf(↵)
↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size �.
These simple up-
dates yield two
additional inter-
esting properties.
First, every iterate ↵(k) can be written as a convex
combination of the starting point ↵(0) and the search
corners s found previously. The parameter ↵

(k)

thus has a sparse representation, which makes the
algorithm suitable even for cases where the dimen-
sionality of ↵ is exponential. Second, since f is
convex, the minimum of the linearization of f over M
immediately gives a lower bound on the value of the
yet unknown optimal solution f(↵⇤). Every step of
the algorithm thus computes for free the following
“linearization duality gap” defined for any feasible
point ↵ 2 M (which is in fact a special case of the
Fenchel duality gap as explained in Appendix B):

g(↵) := max
s

02M
h↵� s

0, rf(↵)i = h↵� s, rf(↵)i. (4)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s

thus readily gives at each iteration the current dual-

Algorithm 1 Frank-Wolfe on a Compact Domain

Let ↵(0) 2 M
for k = 0 . . . K do

Compute s := argmin
s

02M

D

s

0, rf(↵(k))
E

Let � := 2
k+2 , or optimize � by line-search

Update ↵(k+1) := (1 � �)↵(k) + �s

end for

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

� (,2)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

� (,1)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

� (,0)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

� (,4)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

� (,7)

• n |Y| - dim
• block-constrained
• smooth

• d-dim
• unconstrained
• non-smooth, strongly convex

http://dx.doi.org/10.1007/s10994-009-5108-8
http://dx.doi.org/10.1007/s10994-009-5108-8
http://dx.doi.org/10.1007/s10107-010-0420-4
http://dx.doi.org/10.1007/s10107-010-0420-4

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

20 40 60 80 100 120 140
10�2

10�1

100

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

(a) OCR dataset, � = 0.01.

20 40 60 80 100 120 140

10�1

100

101

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

(b) OCR dataset, � = 0.001.

20 40 60 80 100 120 140

10�1

100

101

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

BCFW
SSG

online-EG
FW

cutting plane

(c) OCR dataset, � = 1/n.

10�1 100 101

10�2

10�1

100

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

BCFW
SSG
FW

cutting plane

(d) CoNLL dataset, � = 1/n.

10�1 100 101
0.040

0.060

0.080

0.100

e↵ective passes

te
st

er
ro
r

(e) Test error for � = 1/n on CoNLL.

10�2 10�1 100 101
10�4

10�3

10�2

10�1

100

101

102

e↵ective passes
p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

BCFW
SSG
FW

cutting plane

(f) Matching dataset, � = 0.001.

Figure 1. The shaded areas for the stochastic methods (BCFW, SSG and online-EG) indicate the worst and best objective
achieved in 10 randomized runs. The top row compares the suboptimality achieved by di↵erent solvers for di↵erent
regularization parameters �. For large � (a), the stochastic algorithms (BCFW and SSG) perform considerably better
than the batch solvers (cutting plane and FW). For a small � (c), even the batch solvers achieve a lower objective earlier
on than SSG. Our proposed BCFW algorithm achieves a low objective in both settings. (d) shows the convergence for
CoNLL with the first passes in more details. Here BCFW already results in a low objective even after seeing only few
datapoints. The same can be observed for the test error in (e), where BCFW generally leads to lower error earlier than
the competing solvers. Finally, (f) compares the stochastic methods for the matching prediction task.

Balamurugan et al. (2011) give another generalization
of Hsieh et al. (2008) to the structured case, approx-
imately solving a quadratic program on each exam-
ple using SMO, but again they do not obtain any rate
guarantees. The online-EG method implements a vari-
ant of dual coordinate descent, but it requires an ex-
pectation oracle and Collins et al. (2008) estimate its
primal convergence at only O

�

1/"2
�

.

Besides coordinate descent methods, a variety of other
algorithms have been proposed for structural SVMs.
We summarize a few of the most popular in Table 1,
with their convergence rates quoted in number of ora-
cle calls to reach an accuracy of ". However, we note
that almost no guarantees are given for the optimiza-
tion of structural SVMs with approximate oracles. A
regret analysis in the context of online optimization
was considered by Ratli↵ et al. (2007), but they do not
analyze the e↵ect of this on solving the optimization
problem. The cutting plane algorithm of Tsochan-
taridis et al. (2005) was considered with approximate
maximization by Finley & Joachims (2008), though
the dependence of the running time on the the approx-

imation error was left unclear. In contrast, we pro-
vide guarantees for batch subgradient, cutting plane,
and block-coordinate Frank-Wolfe, for achieving an "-
approximate solution as long as the error of the oracle
is bounded.

9. Discussion

This work proposes a novel randomized block-
coordinate generalization of the classic Frank-Wolfe
algorithm for optimization with block-separable con-
straints. Despite its potentially much lower iteration
cost, the new algorithm achieves the same convergence
rate in the duality gap as the full Frank-Wolfe method.
For the dual structural SVM optimization problem, it
leads to a simple online algorithm that yields a solu-
tion to an issue that is notoriously di�cult to address
for stochastic algorithms: no step-size sequence needs
to be tuned since the optimal step-size can be e�-
ciently computed in closed-form. Further, at the cost

dataset n d

OCR sequence labeling 6251 4028

CoNLL POS sequence labeling 8936 1643026

Matching word alignment 5000 82

Experimental
Results

Thanks!

Related Work
Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

Table 1. Convergence rates given in the number of calls to the oracles for di↵erent optimization algorithms for the struc-
tural SVM objective (1) in the case of a Markov random field structure, to reach a specific accuracy " measured for di↵erent
types of gaps, in term of the number of training examples n, regularization parameter �, size of the label space |Y|, max-
imum feature norm R := maxi,y k i(y)k

2

(some minor terms were ignored for succinctness). Table inspired from (Zhang
et al., 2011). Notice that only stochastic subgradient and our proposed algorithm have rates independent of n.

Optimization algorithm Online Primal/Dual Type of guarantee Oracle type # Oracle calls

dual extragradient (Taskar
et al., 2006)

no primal-“dual” saddle point gap Bregman projection O
⇣

nR log |Y|
�"

⌘

online exponentiated gradient
(Collins et al., 2008)

yes dual expected dual error expectation O
⇣

(n+log |Y|)R2

�"

⌘

excessive gap reduction
(Zhang et al., 2011)

no primal-dual duality gap expectation O

✓

nR
q

log |Y|
�"

◆

BMRM (Teo et al., 2010) no primal �primal error maximization O
⇣

nR2

�"

⌘

1-slack SVM-Struct (Joachims
et al., 2009)

no primal-dual duality gap maximization O
⇣

nR2

�"

⌘

stochastic subgradient
(Shalev-Shwartz et al., 2010)

yes primal primal error w.h.p. maximization Õ
⇣

R2

�"

⌘

this paper: stochastic block-
coordinate Frank-Wolfe

yes primal-dual expected duality gap maximization O
⇣

R2

�"

⌘

Thm. 3

of an additional pass through the data3 (which could
be done alongside a full Frank-Wolfe iteration), it al-
lows us to compute a duality gap guarantee that can
be used to decide when to terminate the algorithm.
Our experiments indicate that empirically it converges
faster than other stochastic algorithms for the struc-
tural SVM problem, especially in the realistic setting
where only a few passes through the data are possible.

Although our structural SVM experiments use an ex-
act maximization oracle, the duality gap guarantees,
the optimal step-size, and the computable duality gap
are all still available when only an appropriate approx-
imate maximization oracle is used. Finally, we note
that although the structural SVM problem is what mo-
tivated this work, we expect that the block-coordinate
Frank-Wolfe algorithm may be useful for many other
problems in machine learning where a complicated ob-
jective with block-separable constraints arises.

3Note that one pass through the data is the same cost
as any online method would need to compute the current
primal objective.

dataset n d

OCR sequence labeling 6251 4028

CoNLL POS sequence labeling 8936 1643026

Matching word alignment 5000 82

Experimental
Results (w/ averaging)

20 40 60 80 100 120 140

10

�2

10

�1

10

0

e↵ective passes

p
r
i
m
a
l
s
u
b
o
p
t
i
m
a
l
i
t
y
f
o
r
p
r
o
b
l
e
m

(
1
)

(a) OCR dataset, � = 0.01.

20 40 60 80 100 120 140

10

�1

10

0

10

1

e↵ective passes

p
r
i
m
a
l
s
u
b
o
p
t
i
m
a
l
i
t
y
f
o
r
p
r
o
b
l
e
m

(
1
)

(b) OCR dataset, � = 0.001.

20 40 60 80 100 120 140

10

�1

10

0

10

1

e↵ective passes

p
r
i
m
a
l
s
u
b
o
p
t
i
m
a
l
i
t
y
f
o
r
p
r
o
b
l
e
m

(
1
)

BCFW

BCFW-tavg

SSG

SSG-tavg

online-EG

FW

cutting plane

(c) OCR dataset, � = 1/n.

10

�1
10

0
10

1

10

�2

10

�1

10

0

e↵ective passes

p
r
i
m
a
l
s
u
b
o
p
t
i
m
a
l
i
t
y
f
o
r
p
r
o
b
l
e
m

(
1
)

BCFW

BCFW-tavg

SSG

SSG-tavg

FW

cutting plane

(d) CoNLL dataset, � = 1/n.

10

�1
10

0
10

1
0.040

0.060

0.080

0.100

e↵ective passes

t
e
s
t
e
r
r
o
r

(e) Test error for � = 1/n on CoNLL.

10

�2
10

�1
10

0
10

1
10

�4

10

�3

10

�2

10

�1

10

0

10

1

10

2

e↵ective passes

p
r
i
m
a
l
s
u
b
o
p
t
i
m
a
l
i
t
y
f
o
r
p
r
o
b
l
e
m

(
1
)

BCFW

BCFW-tavg

SSG

SSG-tavg

FW

cutting plane

(f) Matching dataset, � = 0.001.

Figure 1: The shaded areas for the stochastic methods (BCFW, SSG and online-EG) indicate the worst and
best objective achieved in 10 randomized runs. The top row compares the suboptimality achieved by different
solvers for different regularization parameters �. For large � (a), the stochastic algorithms (BCFW and SSG)
perform considerably better than the batch solvers (cutting plane and FW). For a small � (c), even the batch
solvers achieve a lower objective earlier on than SSG. Our proposed BCFW algorithm achieves a low objective
in both settings. (d) shows the convergence for CoNLL with the first passes in more details. Here BCFW

already results in a low objective even after seeing only few datapoints. The same can be observed for the test
error in (e). Finally, (f) compares the stochastic methods for the matching prediction task.

gorithm implemented in SVMstruct [12] with its default options, the online exponentiated gradient
(online-EG) method of [17], the stochastic subgradient method (SSG) with step-size chosen as in the
“pegasos” version of [4], and the optimal stochastic subgradient (SSG-tavg) method of [22] which
is the same as SSG but the second half of the iterates are averaged (yielding a faster convergence
rate of O(1/k) instead of O (log k/k)). Analogously, BCFW-tavg uses averaging in the second half.
The performance of the different algorithms according to several criteria is visualized in Figure 1.
Additional experiments and a more detailed discussion can be found in the full version of this pa-
per [19]. In most of the experiments, the randomized block-coordinate Frank-Wolfe dominates all
competitors. The superiority is especially striking for the first few iterations, and when using a small
regularization strength �, which is often needed in practice.

6 Discussion

Related Work There has been substantial work on dual coordinate ascent for SVMs, including
the original SMO algorithm, but few of these lead to rate guarantees in the structured case. The
SMO algorithm was generalized to structural SVMs [15, Chapter 6], but this requires something
equivalent to an expectation oracle and its convergence rate seems to scale badly with the size of the
output space. [23] consider optimizing one training example at a time using multiple Frank-Wolfe
updates, but do not obtain any rate guarantees. Our stochastic Frank-Wolfe algorithm is equivalent
to the method of [24] in the degenerate binary SVM case. [24] shows a local linear convergence
rate in the dual, and our result complements this result by providing duality gap guarantees for their
algorithm. Another generalization of [24] to the structured case is [25], but without rate guarantees.
Approximate Maximization Oracles Interestingly, our convergence rates still hold for appropri-
ately defined approximate maximization oracles. For structural SVMs, this significantly improves
the applicability to large-scale problems, where in some cases exact maximization may be too costly
but approximate maximization is possible.
Kernelized Algorithms Our Algorithm 1 can directly be used with kernels by maintaining the
sequence of sparse dual variables ↵

k. We note that this leads to the currently best known upper
bound on the number of support vectors, since we are guaranteed an " accuracy using only O(

R2

�")

support vectors.

4

Frank-Wolfe: History & Related Work

Domain

Frank & Wolfe
1956

Dunn
1978, 1980

Zhang
2003

Clarkson
2008, 2010

Hazan
2008

J. PhD Thesis

linear inequality
constraints

general bounded
convex domain

convex hulls

unit simplex

semidefinite matrices
of bounded trace

general bounded
convex domain

Known
Stepsize

Approx.
Subproblem

Primal-Dual
Guarantee

✗ ✗ ✗

✗ ✓ ✗

✗ ✓ ✗

✓ ✗ ✓
✓ ✓ ✓
✓ ✓ ✓

