
Frank-Wolfe
Gradient
Methods

Iterates Sparse ✓
(using at most k atoms

after k iterations)

Dense ✗

Iteration Cost

 Example:
 trace-norm

Linear oracle
(can be much cheaper)

Projection
step

Iteration Cost

 Example:
 trace-norm top EV full SVD

useful & efficient
certificate for
the approximation
quality

Duality Gap
(for any bounded constrained probem)

For matrix optimization problems, our presented approach results in simplified algorithms for
optimizing over bounded matrix trace norm, arbitrary Schatten norms, or also permutation ma-
trices and rotation matrices. Another particularly interesting application is convex optimization
over bounded matrix max-norm, where no convergence guarantees were known previously.

Finally, we present a new general framework for convex optimization over matrix factoriza-
tions, where every Frank-Wolfe iteration will consist of a low-rank update, and discuss applica-
tions for a broad range of such domains.

We provide an overview of the existing literature on Frank-Wolfe-type methods in several
seemingly unrelated research areas, together with several applications.

History and Related Work. The original Frank-Wolfe algorithm was introduced and analyzed
in [?, Section 6] for polyhedral domains D in Rn (given as an intersection of linear constraints, so
that the subproblem becomes a linear program). The original paper did not yet use the “fixed”
step-size as in Algorithm ??, but instead relied on line-search on a quadratic upper bound on
f . [?] coined the term conditional gradient method for the same algorithm, which [?] then
generalized to arbitrary Banach spaces as in the setting here. Later [?, ?] could show primal
convergence with 1

k

when only approximate linear minimizers of the subproblems are used,
and [?] investigated several alternative variations of (non-)linear subproblems. Another variant
using non-linear subproblems was proposed in [?], in each iteration performing a line-search on
f towards all “vertices” of the domain.

In the machine learning literature, algorithm variants for penalized (instead of constrained)
problems were investigated by [?, ?]. For online optimization of non-smooth functions in the low-
regret setting, a variant has recently been proposed by [?], using randomized smoothing. [?] and
[?, Appendix D] have recently studied Frank-Wolfe methods for atomic domains using similar
ideas as in [?], but obtaining weaker convergence results. [?] gives a recent comprehensive
analysis of such greedy methods from the perspective of function approximation in convex
analysis. To the best of our knowledge, none of the existing approaches could provide duality
gap convergence guarantees, or a�ne invariance (except [?] for the simplex case). A block-
coordinate generalization of the Frank-Wolfe algorithm has recently been proposed in [?].

2 The Duality Gap and Certificates

For any constrained convex optimization problem of the form (??), and a feasible point x 2 D,
we define the following simple surrogate duality gap

g(x) := max
s2D

⌦

x� s,rf(x)
↵

. (2)

Convexity of f implies that the linearization f(x) +
⌦

s � x,rf(x)
↵

always lies below the
graph of the function f , as again illustrated in Figure ??. This immediately gives the crucial
property of the duality gap (??), as being a certificate for the current approximation quality,
i.e. g(x) � f(x)� f(x⇤).

While the value of an optimal solution f(x⇤) is unknown in most problems of interest, the
quantity g(x) for any candidate x is often easy to compute. For example, the duality gap is
“automatically” computed as a by-product of every iteration of the Frank-Wolfe Algorithm ??:
Whenever s is a minimizer of the linearized problem at an arbitrary point x, then this s is a
certificate for the current duality gap g(x) =

⌦

x� s,rf(x)
↵

.

Such certificates for the approximation quality are useful not only for the algorithms consid-
ered here, but in fact for any optimizer of a constrained problem of the form (??), e.g. as a
stopping criterion, or to verify the numerical stability of an optimizer.

This duality concept also extends to the more general case if f is convex but non-smooth. In
this case, the gap is certified by a subgradient of f , see e.g. [?, Section 2.2].

Our defined duality gap (??) can also be interpreted as a special (and simplified) case of
Fenchel duality. Using the Fenchel-Young (in)equality, the gap (??) can be shown to be equal

3

Factorized Matrix Domains

Revisiting Frank-Wolfe:
Projection-Free Sparse Convex Optimization

The Frank-Wolfe Algorithm
(or conditional gradient)

4.3. Factorized Matrix Norms

In this section, we propose a new general framework for optimization over factorizations of a
matrix M 2 Rm⇥n into two factors M = LRT , where L 2 Rm⇥r, R 2 Rn⇥r for some r 2 N. To
do so, we consider atomic domains which consist of the outer products of two atomic sets, i.e.

A :=
n

LRT
�

�

�

L2Aleft ,
R2Aright

o

,

where A
left

✓ Rm⇥r and A
right

✓ Rn⇥r are arbitrary compact subsets (not necessarily finite) of
Rm⇥r and Rn⇥r respectively, and r 2 N is fixed.
By definition of this atomic set, any iteration of the Frank-Wolfe algorithm when optimizing

over D = conv(A) will result in an update of the form s = LRT , that is a low-rank update (of
rank  r). In other words, such domains allow us to maintain all Frank-Wolfe iterates x as a
low-rank matrix factorization (of rank at most  rk in step k).
Our definition can also be seen as a generalization of the fact that any pair of norms on

vectors u 2 Rm and v 2 Rn does induce a matrix norm on Rm⇥n, by means of the quadratic
form u

TMv, see e.g. [BMP08, ZYS12] and [BV04, Example 3.11]. We recover this case when
r = 1. (The work of [ZYS12] appeared after our paper was put online).

r A
left

✓ Rm⇥r A
right

✓ Rn⇥r ⌦
conv(A)

(M) ⌦⇤
A(M) FW step

1 k.k
2

-sphere k.k
2

-sphere Trace norm kMk
tr

kMk
op

Lanczos, see Table 1

1 k.k
1

-sphere k.k
1

-sphere Vector `
1

-norm k ~Mk
1

k ~Mk1 O(nm)
1 k.k1-sphere k.k1-sphere Cut-norm k.k1!1

NP-hard
n+m k.k

2,1 k.k
2,1 Max-norm kMk

max

SDP, see Table 1

1 k.k
2

\ Rm

�0

k.k
2

\ Rn

�0

“non-neg. trace norm” NP-hard [MK87]
1 Simplex �

m

Simplex �
n

“non-neg. matrix `
1

-norm” O(nm)

Table 2: Examples of some factorized matrix norms on Rm⇥n, each induced by two atomic norms (last
two rows giving non-negative factorizations). Here kMk

2,1 is the length of the `
2

-longest row

of the matrix M , and ~M denotes the entries of M written in a single large vector.

Trace Norm. The trace norm (Schatten `
1

-norm) gives the most natural example of such a
factorized matrix norm. The unit ball of the trace norm is known to be the convex hull of the
rank-1 matrices A :=

n

uv

T
�

�

�

u2Rn, kuk2=1

v2Rm, kvk2=1

o

. Here, compared to the cubic complexity of solving

the linear subproblem for general Schatten norms (using SVD, as explained in Section 4.2),
the Frank-Wolfe steps become much more e�cient. This is because the subproblem amounts to
approximating the top eigenvalue (or singular value), which when using the standard Lanczos’ al-
gorithm takes Õ(Nf/

p
") arithmetic operations (suppressing constants and logarithmic factors),

see e.g. Appendix C, when Nf is the number of non-zeros of rf . Altogether, the Frank-Wolfe
algorithm therefore provides "-accurate low-rank solutions (rank O

�

1

"

�

) in a total running time
of Õ

�

Nf/"1.5
�

, which is near-linear in the number of non-zeros Nf , see [JS10]. This contrasts the
accelerated versions of the “singular value thresholding” algorithm of [CCS10], which perform
O(1/

p
") complete SVD computations, as shown in [TY10] and [JY09], in each iteration taking

time cubic in the matrix dimension.
For trace-norm optimization, the presentation here avoids the detour over a semidefinite pro-
gramming formulation present in [JS10] when applying the method of [Haz08]. The same
algorithm applies to optimizing under constrained weighted trace norm, by reduction to the
trace-norm as e.g. described in [GJL12].
For optimizing over semidefinite matrices Sn⇥n of bounded trace, the above discussion is

analogous, replacing singular vectors by eigenvectors, and A :=
�

uu

T
�

�

u 2 Rn, kuk
2

= 1

.

General Factorized Matrix Norm Domains. Even in the case when optimizing over the indi-
vidual atomic domains (given by A

left

and A
right

) is easy, optimizing a linear function over such
a product domain A can rapidly turn into an intractable combinatorial problem, cf. Table 2.

13

f(x)

D

f

x

s

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization

Martin Jaggi jaggi@cmap.polytechnique.fr

CMAP, École Polytechnique, Palaiseau, France

Abstract
We provide stronger and more general
primal-dual convergence results for Frank-
Wolfe-type algorithms (a.k.a. conditional
gradient) for constrained convex optimiza-
tion, enabled by a simple framework of du-
ality gap certificates. Our analysis also holds
if the linear subproblems are only solved ap-
proximately (as well as if the gradients are
inexact), and is proven to be worst-case opti-
mal in the sparsity of the obtained solutions.

On the application side, this allows us to
unify a large variety of existing sparse greedy
methods, in particular for optimization over
convex hulls of an atomic set, even if those
sets can only be approximated, including
sparse (or structured sparse) vectors or ma-
trices, low-rank matrices, permutation matri-
ces, or max-norm bounded matrices.
We present a new general framework for con-
vex optimization over matrix factorizations,
where every Frank-Wolfe iteration will con-
sist of a low-rank update, and discuss the
broad application areas of this approach.

1. Introduction

Our work here addresses general constrained convex
optimization problems of the form

min
x2D

f(x) . (1)

We assume that the objective function f is convex and
continuously di↵erentiable, and that the domain D is a
compact convex subset of any vector space1. For such
optimization problems, one of the simplest and earliest
known iterative optimizers is given by the Frank-Wolfe
method (?), described in Algorithm ??, also known as
the conditional gradient method.

1Formally, we assume that the optimization domain D
is a compact and convex subset of a Hilbert space X , i.e.
a Banach space equipped with an inner product h., .i.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author. This
article builds upon the author’s PhD thesis (?).

Algorithm 1 Frank-Wolfe

Let x

(0) 2 D
for k = 0 . . . K do

Compute s := arg min
s

02D

⌦

s

0, rf(x(k))
↵

Let � := 2

k+2

Update x

(k+1) := (1 � �)x(k) + �s

end for

Algorithm 2 Frank-Wolfe

Let x

(0) 2 D
for k = 0 . . . K do

Compute s := arg min
s

02D

⌦

s

0, rf(x(k))
↵

Optimize � by line-search
Update x

(k+1) := (1 � �)x(k) + �s

end for

Algorithm 3 Frank-Wolfe

Let x

(0) 2 D
for k = 0 . . . K do

Compute s := arg min
s

02D

⌦

s

0, rf(x(k))
↵

Update x

(k+1) := arg min
x2conv(s

(0)
,...,s

(k+1)
)

f(x)

end for

g(x)

• Approximate subproblems
and inexact gradients (or inexact domain)
(using approximate linear minimizers s)

• Line-search
for the optimal step-size

Our defined duality gap (2) can also be interpreted as a special (and simplified) case of
Fenchel duality. Using the Fenchel-Young (in)equality, the gap (2) can be shown to be equal to
the di↵erence of f(x) to the Fenchel conjugate function of f , if the corresponding dual variable
is chosen to be the current (sub)gradient, see [LJJSP13, Appendix D]. The gap defined here is
simpler as it does not involve any dual variables.

3. Variants of the Frank-Wolfe Algorithm

Besides the classical Frank-Wolfe Algorithm 1, the following three algorithm variants are rele-
vant. Later we will prove primal-dual convergence for all four algorithm variants together.

Approximating the Linear Subproblems. Depending on the domain D, solving the linear sub-
problem min

s2D
⌦

s,rf(x(k))
↵

exactly can be too expensive. Algorithm 2 uses any approximate

minimizer s instead, of an additive approximation quality at least "0 := 1

2

��C
f

=
�C

f

k+2

in step k.
Here � � 0 is an arbitrary fixed accuracy parameter, given as an input to the algorithm, and C

f

is the curvature constant of the function f over D, which we define below. Alternatively, it is
also possible to use candidates of a multiplicative approximation quality, if the quality is mea-
sured relative to the current duality gap [LJJSP13, Appendix C]. Similarly, the convergence
can also be guaranteed if the used gradients are inexact (or randomized), or if the used domain
is only an approximate of the true D. We will comment in more details about these cases in
Section 3.4 below. � 2 [0, 1]

Line-Search for the Step-Size. Instead of using the pre-defined step-sizes � = 2

k+2

, Algo-

rithm 3 picks the best point on the line segment between the current iterate x

(k) and s.

Algorithm 2: Frank-Wolfe with Approximate Linear Subproblems, for Quality � � 0

Let x(0) 2 D
for k = 0 . . .K do

Let � := 2

k+2

1 Find s 2 D such that
⌦

s,rf(x(k))
↵

 min
ˆ

s2D

⌦

ŝ,rf(x(k))
↵

+ 1

2

��C
f

2 (Optionally: Perform line-search for �)

3 Update x

(k+1) := (1� �)x(k) + �s

end

Algorithm 3: Line-Search for �

... as Algorithm 2, except replacing line 2 with

2’ � := argmin
�2[0,1]

f
⇣

x

(k) + �
�

s� x

(k)

�

⌘

Algorithm 4: Fully-Corrective Variant,
Re-Optimizing over all Previous Direc-
tions (with s

(0) := x

(0))

... as Algorithm 2, except replacing line 3 with

3’ s

(k+1) := s

Update x

(k+1) := argmin
x2conv(s(0),...,s(k+1)

)

f(x)

“Fully Corrective” Variant. Algorithm 4 depicts the harder-working variant of the Frank-
Wolfe method, which after the addition of a new atom (or search direction) s re-optimizes the
objective f over all previously used atoms [Hol74, Mey74]. Here in step k, the current atom
s = s

(k+1) is still allowed to be an approximate linear minimizer.
Comparing to the original Frank-Wolfe method, the idea is that the variant here will hopefully

make more progress per iteration, and therefore result in iterates x being combinations of even
fewer atoms (i.e. better sparsity). This however comes at a price, namely that the internal
problem in each iteration can now become as hard to solve as the original optimization problem,
implying that no global run-time guarantees can be given for Algorithm 4 in general. On the
positive side however, the re-optimization over the convex hull of the k+2 atoms s(0), . . . , s(k+1)

4

• Fully corrective
(re-optimizing over all used s)

• Away steps
(removing the worst of all used s)

Algorithm Variants

Convergence Results

For some

B. Primal-Dual Convergence

Theorem’ 4 (Primal-Dual Convergence). If Algorithm 1, 2, 3 or 4 is run for K � 2 iterations,

then the algorithm has an iterate x

(

ˆ

k), 1  k̂  k, with duality gap bounded by

g(x(

ˆ

k)) 
2�C

f

k + 2
(1 + �) ,

g(x(

ˆ

k)) 
7C

f

k + 2
,

where � = 27

8

= 3.375, and � � 0 is the accuracy to which the linear subproblems are solved.

Proof. We will actually prove that the iterate of small duality gap will appear in the last third
of the K iterations. To simplify notation, we will denote the primal and dual errors for any
iteration k � 0 in the algorithm by h(k) := h(x(k)) and g(k) := g(x(k)).

By our previous primal convergence Theorem 2, we already know that the primal error satisfies
h(k) = E[f(x(k))]� f(x⇤)  C

k+2

in any iteration k, where we use the notation C := 2C
f

(1 + �).

In the last third of the k iterations, we will now suppose that g(k) always stays larger than
�C

K+2

. We will derive a contradiction to this assumption. We write D := K + 2 to simplify the
notation. Formally, we assume that

g(k) > �C

D

for k 2
�

dµDe � 2 , . . . , K

.

Here the parameter 0 < µ < 1 is arbitrary fixed, but we will see later that a good choice for
this parameter is given by µ := 2

3

.
Now employing the crucial improvement bound from Lemma 3 for the choice of � := 2

k+2

, we

have h(k+1)  h(k) � �g(k) + �

2

2

C
f

(1 + �). This bound from Lemma 3 holds no matter if x(k+1)

is obtained by using the pre-defined step-size, or using line-search, or by re-optimizing over the

previous directions, since f(x(k+1)

Re-Opt)  f(x(k+1)

Line-Search)  f(x(k+1)

�

). Therefore, we have

h(k+1)  h(k) � 2

k+2

g(k) + 2

(k+2)

2Cf

(1 + �)

= h(k) � 2

k+2

g(k) + C

(k+2)

2 .

Plugging in our assumption that the duality gap is still “large”, we obtain

h(k+1) < h(k) � 2

k+2

�C

D

+ C

(k+2)

2 .

Now we use that in our last third of the steps, our � := 2

k+2

is neither too large nor too small:

More precisely, if we define k
min

:= dµDe � 2 (note that k
min

� 0 if K � 1�µ

µ

2), and consider
the steps in k

min

 k  K, then µD  k + 2  D, so that our bound now reads as

h(k+1) < h(k) � 2

D

�C

D

+ C

(µD)

2

= h(k) � 2�C�C/µ

2

D

2 .

We will now sum up this inequality over the last third of the steps from k = k
min

up to k = K.
These are at least K � k

min

+ 1 = K � (dµDe � 2) + 1 � (1� µ)D =: n
3

many steps, resulting
in

h(K+1) < h(kmin) � n
3

2�C�C/µ

2

D

2

 C

µD

� n
3

2µ��1/µ

D

C

µD

= C

µD

⇣

1� n
3

2µ��1/µ

D

⌘

.

here in the last inequality we have just used the primal convergence Theorem 2 giving h(kmin) 
C

kmin+2

 C

µD

. This completes the proof, since we arrive at the contradiction that the primal

error becomes negative, i.e. h(K+1) < 0, when we plug in the claimed values for µ := 2

3

and

� := 27

8

. Indeed, this pair of values will make the following term become zero: 1�n
3

2µ��1/µ

D

=
1� (1� µ)(2µ� � 1/µ) = 1� 1

3

(29

4

� 3

2

) = 0.
Therefore, our assumption on the gap is refuted, and we have proven the claimed bound.

21

Curvature constant is bounded by the Lipschitz constant of the gradient, times diameter:
 w.r.t. any choice of norm! (our algorithms/analysis are norm-free)

Lemma 1. Let f be a convex and di↵erentiable function with its gradient rf being Lipschitz-
continuous w.r.t. some norm k.k over the domain D with Lipschitz-constant L > 0. Then

C
f

 diamk.k(D)2L .

Proof. By [Nes04, Lemma 1.2.3], we have that for any x,y 2 D,

f(y)� f(x)� hy � x,rf(x)i  L

2

ky � xk2

We want to use this upper bound in the definition (3) of the curvature constant. Observing
that for any x, s 2 D, we have that also y := x + �(s � x) 2 D and 1

�

2 ky � xk2 = ks� xk2,
we can therefore upper bound the curvature as

C
f

 sup 2

�

2
L

2

ky � xk2 = supL ks� xk2  L diamk.k(D)2 ,

which is the claimed bound.

A direct motivation to consider the quantity C
f

in connection with Frank-Wolfe methods
follows if we imagine moving from a current point x towards a next “iterate” y := x+�(s�x),
for any relative “step-size” � 2 [0, 1]. Bounded C

f

then means that the deviation of f at y from
the linearization of f at x is bounded, where the acceptable deviation is weighted by the inverse
of the squared step-size �. The defining term f(y)�f(x)�hy�x,rf(x)i is also widely known
as the Bregman divergence defined by f .

In applications, it is not always possible to compute the constant C
f

exactly. However, for all
algorithms we consider here, and also their analysis, it is su�cient to know some upper bound
on C

f

, such as for example some upper bound on the Lipschitz constant of the gradient, in view
of Lemma 1.

3.2. Convergence in Primal Error

The following theorem shows that after O
�

1

"

�

many iterations, the iterate x

(k) of any of the
Frank-Wolfe algorithm variants 1, 2, 3, and 4 is an "-approximate solution to problem (1), i.e.
it satisfies f(x(k))  f(x⇤) + ", for x⇤ being an optimal solution.

Compared to the existing convergence results in the literature [DH78, Dun79, Jon92, Pat93,
Zha03, Cla10], our following proof more clearly highlights the dependence on the approximation
quality � of the linear subproblems, holds for all algorithm variants, and will prepare us for the
main result of convergence in the duality gap in the next Section. Later, in Section 3.8, we
will also show that the resulting convergence rate is indeed best possible for any algorithm that
adds only one new atom per iteration.

Theorem 2 (Primal Convergence). For each k � 1, the iterates x(k) of Algorithms 1, 2, 3, and 4
satisfy

f(x(k))� f(x⇤) 
2C

f

k + 2
(1 + �) ,

where x

⇤ 2 D is an optimal solution to problem (1), and � � 0 is the accuracy to which the
internal linear subproblems are solved (i.e. � = 0 for Algorithm 1).

The proof of the above primal convergence rate theorem crucially depends on the following
Lemma 3, showing that the curvature provides a “quadratic” model / upper bound on our
objective function. Using this model, the Lemma quantifies the improvement in each algorithm
iteration, expressing this improvement in terms of the current duality gap. Applying the lemma,
the convergence proof then follows along the same idea as in [Cla10, Theorem 2.3]. A full proof
is given in Appendix A for completeness. Note that a weaker variant of Lemma 3 for the exact
case � = 0 was already proven by [FW56].

6

Lemma 1. Let f be a convex and di↵erentiable function with its gradient rf being Lipschitz-
continuous w.r.t. some norm k.k over the domain D with Lipschitz-constant L > 0. Then

C
f

 diamk.k(D)2L .

Proof. By [Nes04, Lemma 1.2.3], we have that for any x,y 2 D,

f(y)� f(x)� hy � x,rf(x)i  L

2

ky � xk2

We want to use this upper bound in the definition (3) of the curvature constant. Observing
that for any x, s 2 D, we have that also y := x + �(s � x) 2 D and 1

�

2 ky � xk2 = ks� xk2,
we can therefore upper bound the curvature as

C
f

 sup 2

�

2
L

2

ky � xk2 = supL ks� xk2  L diamk.k(D)2 ,

which is the claimed bound.

A direct motivation to consider the quantity C
f

in connection with Frank-Wolfe methods
follows if we imagine moving from a current point x towards a next “iterate” y := x+�(s�x),
for any relative “step-size” � 2 [0, 1]. Bounded C

f

then means that the deviation of f at y from
the linearization of f at x is bounded, where the acceptable deviation is weighted by the inverse
of the squared step-size �. The defining term f(y)�f(x)�hy�x,rf(x)i is also widely known
as the Bregman divergence defined by f .

In applications, it is not always possible to compute the constant C
f

exactly. However, for all
algorithms we consider here, and also their analysis, it is su�cient to know some upper bound
on C

f

, such as for example some upper bound on the Lipschitz constant of the gradient, in view
of Lemma 1.

3.2. Convergence in Primal Error

The following theorem shows that after O
�

1

"

�

many iterations, the iterate x

(k) of any of the
Frank-Wolfe algorithm variants 1, 2, 3, and 4 is an "-approximate solution to problem (1), i.e.
it satisfies f(x(k))  f(x⇤) + ", for x⇤ being an optimal solution.

Compared to the existing convergence results in the literature [DH78, Dun79, Jon92, Pat93,
Zha03, Cla10], our following proof more clearly highlights the dependence on the approximation
quality � of the linear subproblems, holds for all algorithm variants, and will prepare us for the
main result of convergence in the duality gap in the next Section. Later, in Section 3.8, we
will also show that the resulting convergence rate is indeed best possible for any algorithm that
adds only one new atom per iteration.

Theorem 2 (Primal Convergence). For each k � 1, the iterates x(k) of Algorithms 1, 2, 3, and 4
satisfy

f(x(k))� f(x⇤) 
2C

f

k + 2
(1 + �) ,

where x

⇤ 2 D is an optimal solution to problem (1), and � � 0 is the accuracy to which the
internal linear subproblems are solved (i.e. � = 0 for Algorithm 1).

The proof of the above primal convergence rate theorem crucially depends on the following
Lemma 3, showing that the curvature provides a “quadratic” model / upper bound on our
objective function. Using this model, the Lemma quantifies the improvement in each algorithm
iteration, expressing this improvement in terms of the current duality gap. Applying the lemma,
the convergence proof then follows along the same idea as in [Cla10, Theorem 2.3]. A full proof
is given in Appendix A for completeness. Note that a weaker variant of Lemma 3 for the exact
case � = 0 was already proven by [FW56].

6

Primal Rate

Lemma 1. Let f be a convex and di↵erentiable function with its gradient rf being Lipschitz-
continuous w.r.t. some norm k.k over the domain D with Lipschitz-constant L > 0. Then

C
f

 diamk.k(D)2L .

Proof. By [?, Lemma 1.2.3], we have that for any x,y 2 D,

f(y)� f(x)� hy � x,rf(x)i  L

2

ky � xk2

We want to use this upper bound in the definition (??) of the curvature constant. Observing
that for any x, s 2 D, we have that also y := x + �(s � x) 2 D and 1

�

2 ky � xk2 = ks� xk2,
we can therefore upper bound the curvature as

C
f

 sup 2

�

2
L

2

ky � xk2 = supL ks� xk2  L diamk.k(D)2 ,

which is the claimed bound.

A direct motivation to consider the quantity C
f

in connection with Frank-Wolfe methods
follows if we imagine moving from a current point x towards a next “iterate” y := x+�(s�x),
for any relative “step-size” � 2 [0, 1]. Bounded C

f

then means that the deviation of f at y from
the linearization of f at x is bounded, where the acceptable deviation is weighted by the inverse
of the squared step-size �. The defining term f(y)�f(x)�hy�x,rf(x)i is also widely known
as the Bregman divergence defined by f .
In applications, it is not always possible to compute the constant C

f

exactly. However, for all
algorithms we consider here, and also their analysis, it is su�cient to know some upper bound
on C

f

, such as for example some upper bound on the Lipschitz constant of the gradient, in view
of Lemma ??.

3.2 Convergence in Primal Error

The following theorem shows that after O
�

1

"

�

many iterations, the iterate x

(k) of any of the
Frank-Wolfe algorithm variants ??, ??, ??, and ?? is an "-approximate solution to problem
(??), i.e. it satisfies f(x(k))  f(x⇤) + ", for x⇤ being an optimal solution.
Compared to the existing convergence results in the literature [?, ?, ?, ?, ?, ?], our following

proof more clearly highlights the dependence on the approximation quality � of the linear sub-
problems, holds for all algorithm variants, and will prepare us for the main result of convergence
in the duality gap in the next Section. Later, in Section ??, we will also show that the resulting
convergence rate is indeed best possible for any algorithm that adds only one new atom per
iteration.

Theorem 2 (Primal Convergence). For each k � 1, the iterates x

(k) of Algorithms ??, ??, ??,
and ?? satisfy

f(x(k))� f(x⇤) 
2C

f

k + 2
(1 + �) ,

where x

⇤ 2 D is an optimal solution to problem (??), and � � 0 is the accuracy to which the
internal linear subproblems are solved (i.e. � = 0 for Algorithm ??).

The proof of the above primal convergence rate theorem crucially depends on the following
Lemma ??, showing that the curvature provides a “quadratic” model / upper bound on our
objective function. Using this model, the Lemma quantifies the improvement in each algorithm
iteration, expressing this improvement in terms of the current duality gap. Applying the lemma,
the convergence proof then follows along the same idea as in [?, Theorem 2.3]. A full proof is
given in Appendix ?? for completeness. Note that a weaker variant of Lemma ?? for the exact
case � = 0 was already proven by [?].

6

B. Primal-Dual Convergence

Theorem’ 4 (Primal-Dual Convergence). If Algorithm 1, 2, 3 or 4 is run for K � 2 iterations,

then the algorithm has an iterate x

(

ˆ

k), 1  k̂  k, with duality gap bounded by

g(x(

ˆ

k)) 
2�C

f

k + 2
(1 + �) ,

g(x(

ˆ

k)) 
7C

f

k + 2
,

where � = 27

8

= 3.375, and � � 0 is the accuracy to which the linear subproblems are solved.

Proof. We will actually prove that the iterate of small duality gap will appear in the last third
of the K iterations. To simplify notation, we will denote the primal and dual errors for any
iteration k � 0 in the algorithm by h(k) := h(x(k)) and g(k) := g(x(k)).
By our previous primal convergence Theorem 2, we already know that the primal error satisfies

h(k) = E[f(x(k))]� f(x⇤)  C

k+2

in any iteration k, where we use the notation C := 2C
f

(1 + �).

In the last third of the k iterations, we will now suppose that g(k) always stays larger than
�C

K+2

. We will derive a contradiction to this assumption. We write D := K + 2 to simplify the
notation. Formally, we assume that

g(k) > �C

D

for k 2
�

dµDe � 2 , . . . , K

.

Here the parameter 0 < µ < 1 is arbitrary fixed, but we will see later that a good choice for
this parameter is given by µ := 2

3

.
Now employing the crucial improvement bound from Lemma 3 for the choice of � := 2

k+2

, we

have h(k+1)  h(k) � �g(k) + �

2

2

C
f

(1 + �). This bound from Lemma 3 holds no matter if x(k+1)

is obtained by using the pre-defined step-size, or using line-search, or by re-optimizing over the

previous directions, since f(x(k+1)

Re-Opt)  f(x(k+1)

Line-Search)  f(x(k+1)

�

). Therefore, we have

h(k+1)  h(k) � 2

k+2

g(k) + 2

(k+2)

2Cf

(1 + �)

= h(k) � 2

k+2

g(k) + C

(k+2)

2 .

Plugging in our assumption that the duality gap is still “large”, we obtain

h(k+1) < h(k) � 2

k+2

�C

D

+ C

(k+2)

2 .

Now we use that in our last third of the steps, our � := 2

k+2

is neither too large nor too small:

More precisely, if we define k
min

:= dµDe � 2 (note that k
min

� 0 if K � 1�µ

µ

2), and consider
the steps in k

min

 k  K, then µD  k + 2  D, so that our bound now reads as

h(k+1) < h(k) � 2

D

�C

D

+ C

(µD)

2

= h(k) � 2�C�C/µ

2

D

2 .

We will now sum up this inequality over the last third of the steps from k = k
min

up to k = K.
These are at least K � k

min

+ 1 = K � (dµDe � 2) + 1 � (1� µ)D =: n
3

many steps, resulting
in

h(K+1) < h(kmin) � n
3

2�C�C/µ

2

D

2

 C

µD

� n
3

2µ��1/µ

D

C

µD

= C

µD

⇣

1� n
3

2µ��1/µ

D

⌘

.

here in the last inequality we have just used the primal convergence Theorem 2 giving h(kmin) 
C

kmin+2

 C

µD

. This completes the proof, since we arrive at the contradiction that the primal

error becomes negative, i.e. h(K+1) < 0, when we plug in the claimed values for µ := 2

3

and

� := 27

8

. Indeed, this pair of values will make the following term become zero: 1�n
3

2µ��1/µ

D

=
1� (1� µ)(2µ� � 1/µ) = 1� 1

3

(29

4

� 3

2

) = 0.
Therefore, our assumption on the gap is refuted, and we have proven the claimed bound.

21

Primal-Dual Rate

For all algorithm variants!

Advantages

Affine Invariance

The algorithms and our analysis
are fully invariant under (affine)
transformations of the input task

Contrasting gradient methods which use projections and norms

Optimal Sparsity & Rate

The obtained sparsity k is optimal
for an approximation quality of 1/k

No algorithm can do better in general
Lower bounds for sparsity (l1-domain) and low-rank (trace-norm domain)

Applications to sparse and low-rank optimization

X Optimization Domain Complexity of one Frank-Wolfe Iteration
Atoms A D = conv(A) ⌦⇤

D(y) = sup
s2D

hs,yi Complexity

Rn Sparse vectors k.k
1

-ball kyk1 O(n)
Rn Sign-vectors k.k1-ball kyk

1

O(n)
Rn `

p

-Sphere k.k
p

-ball kyk
q

O(n)
Rn Sparse non-neg. vectors Simplex �

n

max
i

{y
i

} O(n)
Rn Latent group sparse vect. k.kG-ball max

g2G
�

�

y

(g)

�

�

⇤
g

P

g2G |g|
Rm⇥n Matrix trace norm k.k

tr

-ball kyk
op

= �
1

(y) Õ
�

N
f

/
p
"0
�

(Lanczos)
Rm⇥n Matrix operator norm k.k

op

-ball kyk
tr

= k(�
i

(y))k
1

SVD
Rm⇥n Schatten matrix norms k(�

i

(.))k
p

-ball k(�
i

(y))k
q

SVD

Rm⇥n Matrix max-norm k.k
max

-ball Õ
�

N
f

(n+m)1.5/"02.5
�

Rn⇥n Permutation matrices Birkho↵ polytope O(n3)
Rn⇥n Rotation matrices SVD (Procrustes prob.)
Sn⇥n

Rank-1 PSD matrices

of unit trace

{x ⌫ 0, Tr(x) = 1} �
max

(y) Õ
�

N
f

/
p
"0
�

(Lanczos)
Sn⇥n

PSD matrices

of bounded diagonal

{x ⌫ 0, x

ii

 1} Õ
�

N
f

n1.5/"02.5
�

Table 1: Some examples of atomic domains suitable for optimization using the Frank-Wolfe algorithm.
Here SVD refers to the complexity of computing a singular value decomposition, which is
O(min{mn2,m2n}). N

f

is the number of non-zero entries in the gradient of the objective func-

tion f , and "0 = �Cf

k+2

is the required accuracy for the linear subproblems. For any p 2 [1,1],

the conjugate value q is meant to satisfy 1

p

+ 1

q

= 1, allowing q = 1 for p = 1 and vice versa.

turn out to be such problem instances. Clearly, every iteration will add at most one new non-
zero coordinate to x, and the linear subproblems consist of finding the largest entry of the
gradient.
The resulting trade-o↵ between the sparsity and the approximation quality is interesting. Our

above sparsity lower bounds from Lemmata 6 and 7 together with the upper bounds of O
�

1

"

�

from the convergence analysis show that the sparsity of the Frank-Wolfe iterates is indeed best
possible in terms of both primal and dual approximation quality. For optimizing over the
simplex, this trade-o↵ was also described by [GJ09, Cla10], and by [SSSZ10] for the `

1

-ball
(considering primal error).

The `
p

-Ball. An exact Frank-Wolfe iteration only costs linear time when optimizing over any
`
p

-ball domain D, for p 2 [1,1]. This follows by the duality of the `
p

and `
q

-norms, as in
Hölder’s inequality hs,yi  ksk

p

· kyk
q

(for p, q 2 [1,1], 1

p

+ 1

q

= 1, allowing q = 1 for p = 1
and vice versa). An optimal solution s to the linear problem max

ˆ

s, kˆsk
p

1

ŝ

T

y can simply be

obtained from y by choosing |s
i

| / |y
i

|q�1, keeping the same signs. This also holds for the case
p = 1, q = 1, where the domain D becomes the cube.

Structured Atomic Norms. In recent years, structured norms have gained strong interest in
several areas of machine learning, computer vision, and signal processing, due to their ability
to induce more general and structured notions of sparsity, see e.g. [JAB11] for an overview.
Here we will focus on one large class of structured norms, proposed by [OJV11], which due

to the atomic structure is particularly suitable to be used with the Frank-Wolfe algorithm.
Let G be a finite collection of groups of indices g ✓ [n] (which are allowed to overlap), and
S

g2G g = [n]. For each group g, we choose an arbitrary norm k.k
g

, which acts only on the

coordinates belonging to g, i.e. on R|g|. For any v 2 Rn and g ✓ [n], we write v

[g]

2 Rn

for the vector coinciding with v in the coordinates in group g, and being zero elsewhere, i.e.
supp(v

[g]

) ✓ g. The same vector when restricted to these coordinates is written as v
(g)

2 R|g|.
In this setting, a slight generalization of the latent group norm [OJV11] is given by

kxkG := min
v(g)2R|g|

P

g2G
�

�

v

(g)

�

�

g

s.t. x =
P

g2G v[g] .

11

X Optimization Domain Complexity of one Frank-Wolfe Iteration
Atoms A D = conv(A) ⌦⇤

D(y) = sup
s2D

hs,yi Complexity

Rn Sparse vectors k.k
1

-ball kyk1 O(n)
Rn Sign-vectors k.k1-ball kyk

1

O(n)
Rn `

p

-Sphere k.k
p

-ball kyk
q

O(n)
Rn Sparse non-neg. vectors Simplex �

n

max
i

{y
i

} O(n)
Rn Latent group sparse vect. k.kG-ball max

g2G
�

�

y

(g)

�

�

⇤
g

P

g2G |g|
Rm⇥n Matrix trace norm k.k

tr

-ball kyk
op

= �
1

(y) Õ
�

N
f

/
p
"0
�

(Lanczos)
Rm⇥n Matrix operator norm k.k

op

-ball kyk
tr

= k(�
i

(y))k
1

SVD
Rm⇥n Schatten matrix norms k(�

i

(.))k
p

-ball k(�
i

(y))k
q

SVD

Rm⇥n Matrix max-norm k.k
max

-ball Õ
�

N
f

(n+m)1.5/"02.5
�

Rn⇥n Permutation matrices Birkho↵ polytope O(n3)
Rn⇥n Rotation matrices SVD (Procrustes prob.)
Sn⇥n

Rank-1 PSD matrices

of unit trace

{x ⌫ 0, Tr(x) = 1} �
max

(y) Õ
�

N
f

/
p
"0
�

(Lanczos)
Sn⇥n

PSD matrices

of bounded diagonal

{x ⌫ 0, x

ii

 1} Õ
�

N
f

n1.5/"02.5
�

Table 1: Some examples of atomic domains suitable for optimization using the Frank-Wolfe algorithm.
Here SVD refers to the complexity of computing a singular value decomposition, which is
O(min{mn2,m2n}). N

f

is the number of non-zero entries in the gradient of the objective func-

tion f , and "0 = �Cf

k+2

is the required accuracy for the linear subproblems. For any p 2 [1,1],

the conjugate value q is meant to satisfy 1

p

+ 1

q

= 1, allowing q = 1 for p = 1 and vice versa.

turn out to be such problem instances. Clearly, every iteration will add at most one new non-
zero coordinate to x, and the linear subproblems consist of finding the largest entry of the
gradient.
The resulting trade-o↵ between the sparsity and the approximation quality is interesting. Our

above sparsity lower bounds from Lemmata 6 and 7 together with the upper bounds of O
�

1

"

�

from the convergence analysis show that the sparsity of the Frank-Wolfe iterates is indeed best
possible in terms of both primal and dual approximation quality. For optimizing over the
simplex, this trade-o↵ was also described by [GJ09, Cla10], and by [SSSZ10] for the `

1

-ball
(considering primal error).

The `
p

-Ball. An exact Frank-Wolfe iteration only costs linear time when optimizing over any
`
p

-ball domain D, for p 2 [1,1]. This follows by the duality of the `
p

and `
q

-norms, as in
Hölder’s inequality hs,yi  ksk

p

· kyk
q

(for p, q 2 [1,1], 1

p

+ 1

q

= 1, allowing q = 1 for p = 1
and vice versa). An optimal solution s to the linear problem max

ˆ

s, kˆsk
p

1

ŝ

T

y can simply be

obtained from y by choosing |s
i

| / |y
i

|q�1, keeping the same signs. This also holds for the case
p = 1, q = 1, where the domain D becomes the cube.

Structured Atomic Norms. In recent years, structured norms have gained strong interest in
several areas of machine learning, computer vision, and signal processing, due to their ability
to induce more general and structured notions of sparsity, see e.g. [JAB11] for an overview.
Here we will focus on one large class of structured norms, proposed by [OJV11], which due

to the atomic structure is particularly suitable to be used with the Frank-Wolfe algorithm.
Let G be a finite collection of groups of indices g ✓ [n] (which are allowed to overlap), and
S

g2G g = [n]. For each group g, we choose an arbitrary norm k.k
g

, which acts only on the

coordinates belonging to g, i.e. on R|g|. For any v 2 Rn and g ✓ [n], we write v

[g]

2 Rn

for the vector coinciding with v in the coordinates in group g, and being zero elsewhere, i.e.
supp(v

[g]

) ✓ g. The same vector when restricted to these coordinates is written as v
(g)

2 R|g|.
In this setting, a slight generalization of the latent group norm [OJV11] is given by

kxkG := min
v(g)2R|g|

P

g2G
�

�

v

(g)

�

�

g

s.t. x =
P

g2G v[g] .

11

Generalized sparsity problems: Usually in machine learning and signal processing

applications, we optimize over a domain

more complicated asymptotic lower bound of ⌦
�

1

k

1+µ

�

on the primal error of the Frank-Wolfe
algorithm when run on quadratic objectives, for all µ > 0.
Our lower bound here also extends to prove that the obtained duality gap g(x) is best possible:

Lemma 7. For f(x) := kxk2
2

, and any k 2 N, k < n, it holds that

g(x) � 2

k

8x 2 �
n

s.t. card(x)  k .

Proof. g(x) = x

Trf(x)�min
i

(rf(x))
i

= 2(xT

x�min
i

x
i

). We now use min
i

x
i

= 0 because
card(x) < n, and that by Lemma 6 we have x

T

x = f(x) � 1

k

.

4. Optimizing over Atomic Sets and Norm Balls

For any compact and convex subset D of a vector space X , the function ⌦D : X ! R+ [{+1}
defined as

⌦D(x) := inf
t�0

{t |x 2 tD}

is called the gauge function [Roc97] of the convex set D, also known as theMinkowski functional.
The support function of D is given by

⌦⇤
D(y) := sup

s2D
hs,yi .

If the original gauge function ⌦D(.) = k.k is a norm, then ⌦⇤
D(.) = k.k⇤ is precisely its dual

norm.

Atomic Norms. In the special case when the set D := conv(A) is chosen as a convex hull of
another set A, then ⌦D(.) becomes the so called atomic norm [CRPW12] defined by A.
Despite its name, the atomic norm is not always necessarily a norm. In general, the func-

tion ⌦D(.) is known to be a semi-norm if and only if D is centrally symmetric, and it becomes
a norm if additionally 0 2 int(D) [Roc97], or see also the discussion in [CRPW12].
The support function of an atomic domain is obtained by taking the largest inner product with

an atomic element, ⌦⇤
D(x) = sup

s2Ahs,xi, which is often easier to compute than a maximum
over the full domain conv(A). This follows directly from the definition of the convex hull,
implying that any linear function attains its maximum over a convex hull at a vertex, or formally
⌦⇤
A(.) = ⌦⇤

conv(A)

(.). This key property enables the e�cient application of the Frank-Wolfe
algorithm for atomic domains in the following.

Frank-Wolfe Algorithms for Optimizing over Atomic Domains. In Table 1, we summarize
a variety of atomic domains D, over which convex optimization problems of the form (1) can
be solved e�ciently by the presented Frank-Wolfe methods, using O

�

1

"

�

iterations. Depending
on the structure of the atoms, this means that the Frank-Wolfe iterates x will often inherit
some of this structure, such as sparsity or low rank. In the next subsections we explain these
domains more precisely and comment on the computational complexity of the respective linear
subproblems. Note that the use of unit ball (or gauge) domains comes with no loss of generality,
since the argument of f(.) can be re-scaled by an arbitrary constant.

4.1. Optimizing over Vectors

Sparse Vectors / `
1

-Ball / Simplex. The convex hull of the signed unit basis vectors A =
{±e

i

| i 2 [n]} in Rn is the unit ball of the `
1

-norm. On the other hand, the unit simplex is
the convex hull of the unit basis vectors. The use of Frank-Wolfe-type greedy algorithms for
finding sparse vectors which optimize a convex function over such domains is well-studied in the
literature, see e.g. [Cla10] and the references therein. This motivated by the many prominent
applications such as for example Lasso regression [Tib96] in statistics, sparse recovery [MZ93]
in signal processing, and also many machine machine learning tasks, where e.g. boosting (Ad-
aboost), support vector machines [GJ09, Cla10, OG10], and density estimation [LB99, BLJO12]

10

 , that is the convex hull of a
simple set of things/atoms (atomic norm idea).

For such problems, Frank-Wolfe methods are particularly suitable:

Many other application such as optimizing over structured atomic norms,
matrix factorizations, and submodular optimization

4.3. Factorized Matrix Norms

In this section, we propose a new general framework for optimization over factorizations of a
matrix M 2 Rm⇥n into two factors M = LRT , where L 2 Rm⇥r, R 2 Rn⇥r for some r 2 N. To
do so, we consider atomic domains which consist of the outer products of two atomic sets, i.e.

A :=
n

LRT
�

�

�

L2Aleft ,
R2Aright

o

,

where A
left

✓ Rm⇥r and A
right

✓ Rn⇥r are arbitrary compact subsets (not necessarily finite) of
Rm⇥r and Rn⇥r respectively, and r 2 N is fixed.
By definition of this atomic set, any iteration of the Frank-Wolfe algorithm when optimizing

over D = conv(A) will result in an update of the form s = LRT , that is a low-rank update (of
rank  r). In other words, such domains allow us to maintain all Frank-Wolfe iterates x as a
low-rank matrix factorization (of rank at most  rk in step k).
Our definition can also be seen as a generalization of the fact that any pair of norms on

vectors u 2 Rm and v 2 Rn does induce a matrix norm on Rm⇥n, by means of the quadratic
form u

TMv, see e.g. [?, ?] and [?, Example 3.11]. We recover this case when r = 1. (The work
of [?] appeared after our paper was put online).

r A
left

✓ Rm⇥r A
right

✓ Rn⇥r ⌦
conv(A)

(M) ⌦⇤
A(M) FW step

1 k.k
2

-sphere k.k
2

-sphere Trace norm kMk
tr

kMk
op

Lanczos, see Table 1

1 k.k
1

-sphere k.k
1

-sphere Vector `
1

-norm k ~Mk
1

k ~Mk1 O(nm)
1 k.k1-sphere k.k1-sphere Cut-norm k.k1!1

NP-hard [?]
n+m k.k

2,1 k.k
2,1 Max-norm kMk

max

SDP, see Table 1

1 k.k
2

\ Rm

�0

k.k
2

\ Rn

�0

“non-neg. trace norm” NP-hard [?]
1 Simplex �

m

Simplex �
n

“non-neg. matrix `
1

-norm” O(nm)

Table 2: Examples of some factorized matrix norms on Rm⇥n, each induced by two atomic norms (last
two rows giving non-negative factorizations). Here kMk

2,1 is the length of the `
2

-longest row

of the matrix M , and ~M denotes the entries of M written in a single large vector.

Trace Norm. The trace norm (Schatten `
1

-norm) gives the most natural example of such a
factorized matrix norm. The unit ball of the trace norm is known to be the convex hull of the
rank-1 matrices A :=

n

uv

T
�

�

�

u2Rn, kuk2=1

v2Rm, kvk2=1

o

. Here, compared to the cubic complexity of solving

the linear subproblem for general Schatten norms (using SVD, as explained in Section 4.2),
the Frank-Wolfe steps become much more e�cient. This is because the subproblem amounts
to approximating the top eigenvalue (or singular value), which when using the standard Lanc-
zos’ algorithm takes Õ(Nf/

p
") arithmetic operations (suppressing constants and logarithmic

factors), see e.g. Appendix C, when Nf is the number of non-zeros of rf . Altogether, the
Frank-Wolfe algorithm therefore provides "-accurate low-rank solutions (rank O

�

1

"

�

) in a total
running time of Õ

�

Nf/"1.5
�

, which is near-linear in the number of non-zeros Nf , see [?]. This
contrasts the accelerated versions of the “singular value thresholding” algorithm of [?], which
perform O(1/

p
") complete SVD computations, as shown in [?] and [?], in each iteration taking

time cubic in the matrix dimension.
For trace-norm optimization, the presentation here avoids the detour over a semidefinite pro-
gramming formulation present in [?] when applying the method of [?]. The same algorithm
applies to optimizing under constrained weighted trace norm, by reduction to the trace-norm
as e.g. described in [?].
For optimizing over semidefinite matrices Sn⇥n of bounded trace, the above discussion is

analogous, replacing singular vectors by eigenvectors, and A :=
�

uu

T
�

�

u 2 Rn, kuk
2

= 1

.

General Factorized Matrix Norm Domains. Even in the case when optimizing over the indi-
vidual atomic domains (given by A

left

and A
right

) is easy, optimizing a linear function over such
a product domain A can rapidly turn into an intractable combinatorial problem, cf. Table 2.

13

4.3. Factorized Matrix Norms

In this section, we propose a new general framework for optimization over factorizations of a
matrix M 2 Rm⇥n into two factors M = LRT , where L 2 Rm⇥r, R 2 Rn⇥r for some r 2 N. To
do so, we consider atomic domains which consist of the outer products of two atomic sets, i.e.

A :=
n

LRT
�

�

�

L2Aleft ,
R2Aright

o

,

where A
left

✓ Rm⇥r and A
right

✓ Rn⇥r are arbitrary compact subsets (not necessarily finite) of
Rm⇥r and Rn⇥r respectively, and r 2 N is fixed.

By definition of this atomic set, any iteration of the Frank-Wolfe algorithm when optimizing
over D = conv(A) will result in an update of the form s = LRT , that is a low-rank update (of
rank  r). In other words, such domains allow us to maintain all Frank-Wolfe iterates x as a
low-rank matrix factorization (of rank at most  rk in step k).

Our definition can also be seen as a generalization of the fact that any pair of norms on
vectors u 2 Rm and v 2 Rn does induce a matrix norm on Rm⇥n, by means of the quadratic
form u

TMv, see e.g. [BMP08, ZYS12] and [BV04, Example 3.11]. We recover this case when
r = 1. (The work of [ZYS12] appeared after our paper was put online).

r A
left

✓ Rm⇥r A
right

✓ Rn⇥r ⌦
conv(A)

(M) ⌦⇤
A(M) FW step

1 k.k
2

-sphere k.k
2

-sphere Trace norm kMk
tr

kMk
op

Lanczos, see Table 1

1 k.k
1

-sphere k.k
1

-sphere Vector `
1

-norm k ~Mk
1

k ~Mk1 O(nm)
1 k.k1-sphere k.k1-sphere Cut-norm k.k1!1

NP-hard
n+m k.k

2,1 k.k
2,1 Max-norm kMk

max

SDP, see Table 1

1 k.k
2

\ Rm

�0

k.k
2

\ Rn

�0

“non-neg. trace norm” NP-hard [MK87]
1 Simplex �

m

Simplex �
n

“non-neg. matrix `
1

-norm” O(nm)

Table 2: Examples of some factorized matrix norms on Rm⇥n, each induced by two atomic norms (last
two rows giving non-negative factorizations). Here kMk

2,1 is the length of the `
2

-longest row

of the matrix M , and ~M denotes the entries of M written in a single large vector.

Trace Norm. The trace norm (Schatten `
1

-norm) gives the most natural example of such a
factorized matrix norm. The unit ball of the trace norm is known to be the convex hull of the
rank-1 matrices A :=

n

uv

T
�

�

�

u2Rn, kuk2=1

v2Rm, kvk2=1

o

. Here, compared to the cubic complexity of solving

the linear subproblem for general Schatten norms (using SVD, as explained in Section 4.2),
the Frank-Wolfe steps become much more e�cient. This is because the subproblem amounts to
approximating the top eigenvalue (or singular value), which when using the standard Lanczos’ al-
gorithm takes Õ(Nf/

p
") arithmetic operations (suppressing constants and logarithmic factors),

see e.g. Appendix C, when Nf is the number of non-zeros of rf . Altogether, the Frank-Wolfe
algorithm therefore provides "-accurate low-rank solutions (rank O

�

1

"

�

) in a total running time
of Õ

�

Nf/"1.5
�

, which is near-linear in the number of non-zeros Nf , see [JS10]. This contrasts the
accelerated versions of the “singular value thresholding” algorithm of [CCS10], which perform
O(1/

p
") complete SVD computations, as shown in [TY10] and [JY09], in each iteration taking

time cubic in the matrix dimension.
For trace-norm optimization, the presentation here avoids the detour over a semidefinite pro-
gramming formulation present in [JS10] when applying the method of [Haz08]. The same
algorithm applies to optimizing under constrained weighted trace norm, by reduction to the
trace-norm as e.g. described in [GJL12].

For optimizing over semidefinite matrices Sn⇥n of bounded trace, the above discussion is
analogous, replacing singular vectors by eigenvectors, and A :=

�

uu

T
�

�

u 2 Rn, kuk
2

= 1

.

General Factorized Matrix Norm Domains. Even in the case when optimizing over the indi-
vidual atomic domains (given by A

left

and A
right

) is easy, optimizing a linear function over such
a product domain A can rapidly turn into an intractable combinatorial problem, cf. Table 2.

13

4.3. Factorized Matrix Norms

In this section, we propose a new general framework for optimization over factorizations of a
matrix M 2 Rm⇥n into two factors M = LRT , where L 2 Rm⇥r, R 2 Rn⇥r for some r 2 N. To
do so, we consider atomic domains which consist of the outer products of two atomic sets, i.e.

A :=
n

LRT
�

�

�

L2Aleft ,
R2Aright

o

,

where A
left

✓ Rm⇥r and A
right

✓ Rn⇥r are arbitrary compact subsets (not necessarily finite) of
Rm⇥r and Rn⇥r respectively, and r 2 N is fixed.
By definition of this atomic set, any iteration of the Frank-Wolfe algorithm when optimizing

over D = conv(A) will result in an update of the form s = LRT , that is a low-rank update (of
rank  r). In other words, such domains allow us to maintain all Frank-Wolfe iterates x as a
low-rank matrix factorization (of rank at most  rk in step k).
Our definition can also be seen as a generalization of the fact that any pair of norms on

vectors u 2 Rm and v 2 Rn does induce a matrix norm on Rm⇥n, by means of the quadratic
form u

TMv, see e.g. [BMP08, ZYS12] and [BV04, Example 3.11]. We recover this case when
r = 1. (The work of [ZYS12] appeared after our paper was put online).

r A
left

✓ Rm⇥r A
right

✓ Rn⇥r ⌦
conv(A)

(M) ⌦⇤
A(M) FW step

1 k.k
2

-sphere k.k
2

-sphere Trace norm kMk
tr

kMk
op

Lanczos, see Table 1

1 k.k
1

-sphere k.k
1

-sphere Vector `
1

-norm k ~Mk
1

k ~Mk1 O(nm)
1 k.k1-sphere k.k1-sphere Cut-norm k.k1!1

NP-hard
n+m k.k

2,1 k.k
2,1 Max-norm kMk

max

SDP, see Table 1

1 k.k
2

\ Rm

�0

k.k
2

\ Rn

�0

“non-neg. trace norm” NP-hard [MK87]
1 Simplex �

m

Simplex �
n

“non-neg. matrix `
1

-norm” O(nm)

Table 2: Examples of some factorized matrix norms on Rm⇥n, each induced by two atomic norms (last
two rows giving non-negative factorizations). Here kMk

2,1 is the length of the `
2

-longest row

of the matrix M , and ~M denotes the entries of M written in a single large vector.

Trace Norm. The trace norm (Schatten `
1

-norm) gives the most natural example of such a
factorized matrix norm. The unit ball of the trace norm is known to be the convex hull of the
rank-1 matrices A :=

n

uv

T
�

�

�

u2Rn, kuk2=1

v2Rm, kvk2=1

o

. Here, compared to the cubic complexity of solving

the linear subproblem for general Schatten norms (using SVD, as explained in Section 4.2),
the Frank-Wolfe steps become much more e�cient. This is because the subproblem amounts to
approximating the top eigenvalue (or singular value), which when using the standard Lanczos’ al-
gorithm takes Õ(Nf/

p
") arithmetic operations (suppressing constants and logarithmic factors),

see e.g. Appendix C, when Nf is the number of non-zeros of rf . Altogether, the Frank-Wolfe
algorithm therefore provides "-accurate low-rank solutions (rank O

�

1

"

�

) in a total running time
of Õ

�

Nf/"1.5
�

, which is near-linear in the number of non-zeros Nf , see [JS10]. This contrasts the
accelerated versions of the “singular value thresholding” algorithm of [CCS10], which perform
O(1/

p
") complete SVD computations, as shown in [TY10] and [JY09], in each iteration taking

time cubic in the matrix dimension.
For trace-norm optimization, the presentation here avoids the detour over a semidefinite pro-
gramming formulation present in [JS10] when applying the method of [Haz08]. The same
algorithm applies to optimizing under constrained weighted trace norm, by reduction to the
trace-norm as e.g. described in [GJL12].
For optimizing over semidefinite matrices Sn⇥n of bounded trace, the above discussion is

analogous, replacing singular vectors by eigenvectors, and A :=
�

uu

T
�

�

u 2 Rn, kuk
2

= 1

.

General Factorized Matrix Norm Domains. Even in the case when optimizing over the indi-
vidual atomic domains (given by A

left

and A
right

) is easy, optimizing a linear function over such
a product domain A can rapidly turn into an intractable combinatorial problem, cf. Table 2.

13

➔ every FW iteration is a low-rank update

For two sets Consider the outer-product matrices

Idea:	

Minimize a
linear approximation of f

Natural way to optimize over matrix factorizations
(including sparse and non-negative ones)

Introduction: There are two types of first-order
methods for constrained convex optimization. One
of them became nearly forgotten in the last decades.

Contributions: Stronger and more general primal-
dual convergence results for Frank-Wolfe methods,
and a unified view on many variants and applications.

Setup
Constrained convex optim.

1. Introduction

Algorithm 1: Frank-Wolfe Algorithm

Let x(0) 2 D
for k = 0 . . .K do

Compute s := argmin
s2D

⌦

s,rf(x(k))
↵

Let � := 2

k+2

Update x

(k+1) := (1� �)x(k) + �s

end

Our work here addresses general constrained
convex optimization problems of the form

min
x2D

f(x) . (1)

We assume that the objective function f is
convex and continuously di↵erentiable, and
that the domain D is a compact convex sub-
set of any vector space1. For such optimiza-
tion problems, one of the simplest and earliest
known iterative optimizers is given by the Frank-Wolfe method [FW56], described in Algo-
rithm 1, also known as the conditional gradient method [LP66].
A step of this algorithm is illustrated in Figure ??: At a current position x, the algorithm

considers the linearization of the objective function, and moves slightly towards a minimizer of
this linear function (taken over the same domain).
In terms of convergence, it is known that the iterates of Algorithm 1 satisfy f(x(k))�f(x⇤) 

O
�

1

k

�

, for x⇤ being an optimal solution to (1) [FW56, DH78]. In recent years, Frank-Wolfe-type
methods have re-gained interest in several areas, fueled by the good scalability, and the crucial
property that Algorithm 1 maintains its iterates as a convex combination of only few “atoms”
s, enabling e.g. sparse and low-rank solutions (since at most one new extreme point of the
domain D is added in each step) see e.g. [Cla10, Jag11] for an overview.

Contributions. The contributions of this paper are two-fold: On the theoretical side, we give
a convergence analysis for the general Frank-Wolfe algorithm guaranteeing small duality gap,
and provide e�cient certificates for the approximation quality (which are useful even for other
optimizers). This result is obtained by extending the duality concept as well as the analysis of
[Cla10] to general Fenchel duality, and approximate linear subproblems. Furthermore, the pre-
sented analysis unifies several existing convergence results for di↵erent sparse greedy algorithm
variants into one simplified proof. In contrast to the majority of existing convex optimization
methods, our convergence analysis (as well as the algorithm itself) are fully invariant under
any a�ne transformation/pre-conditioning of the input optimization problem (1).
On the practical side, we illustrate the broader applicability of Frank-Wolfe-type methods,

when compared to their main competitors being projected gradient descent and proximal meth-
ods. Per iteration, Frank-Wolfe uses significantly less expensive linear subproblems compared
to quadratic problems in the later, which can make the di↵erence between simple and intractable
for e.g. the dual of structural SVMs [LJJSP13], or an order of magnitude iteration cost for the
trace norm (leading eigenvector vs. SVD) [JS10].
We point out that all convex optimization problems over convex hulls of atomic sets [CRPW12],

which appear as the natural convex relaxations of combinatorial (NP-hard) “sparsity” problems,
are directly suitable for Frank-Wolfe-type methods (using one atom per iteration), even when
the domain can only be approximated. For optimization over vectors, prominent examples in-
clude optimizing over arbitrary norm-constrained domains (such as `

1

), as well as norms that
induce structured sparsity of the approximate solutions, such as submodular polyhedra.
For matrix optimization problems, our presented approach results in simplified algorithms for

optimizing over bounded matrix trace norm, arbitrary Schatten norms, or also permutation ma-
trices and rotation matrices. Another particularly interesting application is convex optimization
over bounded matrix max-norm, where no convergence guarantees were known previously.

1Formally, we assume that the optimization domain D is a compact and convex subset of an arbitrary Hilbert
space X , i.e. a Banach space equipped with an inner product h., .i. If X is an infinite dimensional Banach
space, then f is assumed to be Fréchet di↵erentiable, and the algorithms and analysis presented in this paper
hold analogously.

2

compact,

1. Introduction

Algorithm 1: Frank-Wolfe Algorithm

Let x(0) 2 D
for k = 0 . . .K do

Compute s := argmin
s2D

⌦

s,rf(x(k))
↵

Let � := 2

k+2

Update x

(k+1) := (1� �)x(k) + �s

end

Our work here addresses general constrained
convex optimization problems of the form

min
x2D

f(x) . (1)

We assume that the objective function f is
convex and continuously di↵erentiable, and
that the domain D is a compact convex sub-
set of any vector space1. For such optimiza-
tion problems, one of the simplest and earliest
known iterative optimizers is given by the Frank-Wolfe method [FW56], described in Algo-
rithm 1, also known as the conditional gradient method [LP66].
A step of this algorithm is illustrated in Figure ??: At a current position x, the algorithm

considers the linearization of the objective function, and moves slightly towards a minimizer of
this linear function (taken over the same domain).
In terms of convergence, it is known that the iterates of Algorithm 1 satisfy

f(x(k))� f(x⇤)  O
�

1

k

�

for x

⇤ being an optimal solution to (1) [FW56, DH78]. In recent years, Frank-Wolfe-type
methods have re-gained interest in several areas, fueled by the good scalability, and the crucial
property that Algorithm 1 maintains its iterates as a convex combination of only few “atoms”
s, enabling e.g. sparse and low-rank solutions (since at most one new extreme point of the
domain D is added in each step) see e.g. [Cla10, Jag11] for an overview.

Contributions. The contributions of this paper are two-fold: On the theoretical side, we give
a convergence analysis for the general Frank-Wolfe algorithm guaranteeing small duality gap,
and provide e�cient certificates for the approximation quality (which are useful even for other
optimizers). This result is obtained by extending the duality concept as well as the analysis of
[Cla10] to general Fenchel duality, and approximate linear subproblems. Furthermore, the pre-
sented analysis unifies several existing convergence results for di↵erent sparse greedy algorithm
variants into one simplified proof. In contrast to the majority of existing convex optimization
methods, our convergence analysis (as well as the algorithm itself) are fully invariant under
any a�ne transformation/pre-conditioning of the input optimization problem (1).
On the practical side, we illustrate the broader applicability of Frank-Wolfe-type methods,

when compared to their main competitors being projected gradient descent and proximal meth-
ods. Per iteration, Frank-Wolfe uses significantly less expensive linear subproblems compared
to quadratic problems in the later, which can make the di↵erence between simple and intractable
for e.g. the dual of structural SVMs [LJJSP13], or an order of magnitude iteration cost for the
trace norm (leading eigenvector vs. SVD) [JS10].
We point out that all convex optimization problems over convex hulls of atomic sets [CRPW12],

which appear as the natural convex relaxations of combinatorial (NP-hard) “sparsity” problems,
are directly suitable for Frank-Wolfe-type methods (using one atom per iteration), even when
the domain can only be approximated. For optimization over vectors, prominent examples in-
clude optimizing over arbitrary norm-constrained domains (such as `

1

), as well as norms that
induce structured sparsity of the approximate solutions, such as submodular polyhedra.

1Formally, we assume that the optimization domain D is a compact and convex subset of an arbitrary Hilbert
space X , i.e. a Banach space equipped with an inner product h., .i. If X is an infinite dimensional Banach
space, then f is assumed to be Fréchet di↵erentiable, and the algorithms and analysis presented in this paper
hold analogously.

2

 differentiable

1. Introduction

Algorithm 1: Frank-Wolfe Algorithm

Let x(0) 2 D
for k = 0 . . .K do

Compute s := argmin
s2D

⌦

s,rf(x(k))
↵

Let � := 2

k+2

Update x

(k+1) := (1� �)x(k) + �s

end

Our work here addresses general constrained
convex optimization problems of the form

min
x2D

f(x) . (1)

We assume that the objective function f is
convex and continuously di↵erentiable, and
that the domain D is a compact convex sub-
set of any vector space1. For such optimiza-
tion problems, one of the simplest and earliest
known iterative optimizers is given by the Frank-Wolfe method [FW56], described in Algo-
rithm 1, also known as the conditional gradient method [LP66].
A step of this algorithm is illustrated in Figure ??: At a current position x, the algorithm

considers the linearization of the objective function, and moves slightly towards a minimizer of
this linear function (taken over the same domain).
In terms of convergence, it is known that the iterates of Algorithm 1 satisfy f(x(k))�f(x⇤) 

O
�

1

k

�

, for x⇤ being an optimal solution to (1) [FW56, DH78]. In recent years, Frank-Wolfe-type
methods have re-gained interest in several areas, fueled by the good scalability, and the crucial
property that Algorithm 1 maintains its iterates as a convex combination of only few “atoms”
s, enabling e.g. sparse and low-rank solutions (since at most one new extreme point of the
domain D is added in each step) see e.g. [Cla10, Jag11] for an overview.

Contributions. The contributions of this paper are two-fold: On the theoretical side, we give
a convergence analysis for the general Frank-Wolfe algorithm guaranteeing small duality gap,
and provide e�cient certificates for the approximation quality (which are useful even for other
optimizers). This result is obtained by extending the duality concept as well as the analysis of
[Cla10] to general Fenchel duality, and approximate linear subproblems. Furthermore, the pre-
sented analysis unifies several existing convergence results for di↵erent sparse greedy algorithm
variants into one simplified proof. In contrast to the majority of existing convex optimization
methods, our convergence analysis (as well as the algorithm itself) are fully invariant under
any a�ne transformation/pre-conditioning of the input optimization problem (1).
On the practical side, we illustrate the broader applicability of Frank-Wolfe-type methods,

when compared to their main competitors being projected gradient descent and proximal meth-
ods. Per iteration, Frank-Wolfe uses significantly less expensive linear subproblems compared
to quadratic problems in the later, which can make the di↵erence between simple and intractable
for e.g. the dual of structural SVMs [LJJSP13], or an order of magnitude iteration cost for the
trace norm (leading eigenvector vs. SVD) [JS10].
We point out that all convex optimization problems over convex hulls of atomic sets [CRPW12],

which appear as the natural convex relaxations of combinatorial (NP-hard) “sparsity” problems,
are directly suitable for Frank-Wolfe-type methods (using one atom per iteration), even when
the domain can only be approximated. For optimization over vectors, prominent examples in-
clude optimizing over arbitrary norm-constrained domains (such as `

1

), as well as norms that
induce structured sparsity of the approximate solutions, such as submodular polyhedra.
For matrix optimization problems, our presented approach results in simplified algorithms for

optimizing over bounded matrix trace norm, arbitrary Schatten norms, or also permutation ma-
trices and rotation matrices. Another particularly interesting application is convex optimization
over bounded matrix max-norm, where no convergence guarantees were known previously.

1Formally, we assume that the optimization domain D is a compact and convex subset of an arbitrary Hilbert
space X , i.e. a Banach space equipped with an inner product h., .i. If X is an infinite dimensional Banach
space, then f is assumed to be Fréchet di↵erentiable, and the algorithms and analysis presented in this paper
hold analogously.

2

more complicated asymptotic lower bound of ⌦
�

1

k

1+µ

�

on the primal error of the Frank-Wolfe
algorithm when run on quadratic objectives, for all µ > 0.
Our lower bound here also extends to prove that the obtained duality gap g(x) is best possible:

Lemma 7. For f(x) := kxk2
2

, and any k 2 N, k < n, it holds that

g(x) � 2

k

8x 2 �
n

s.t. card(x)  k .

Proof. g(x) = x

Trf(x)�min
i

(rf(x))
i

= 2(xT

x�min
i

x
i

). We now use min
i

x
i

= 0 because
card(x) < n, and that by Lemma 6 we have x

T

x = f(x) � 1

k

.

4. Optimizing over Atomic Sets and Norm Balls

For any compact and convex subset D of a vector space X , the function ⌦D : X ! R+ [{+1}
defined as

⌦D(x) := inf
t�0

{t |x 2 tD}

is called the gauge function [Roc97] of the convex set D, also known as theMinkowski functional.
The support function of D is given by

⌦⇤
D(y) := sup

s2D
hs,yi .

If the original gauge function ⌦D(.) = k.k is a norm, then ⌦⇤
D(.) = k.k⇤ is precisely its dual

norm.

Atomic Norms. In the special case when the set D := conv(A) is chosen as a convex hull of
another set A, then ⌦D(.) becomes the so called atomic norm [CRPW12] defined by A.
Despite its name, the atomic norm is not always necessarily a norm. In general, the func-

tion ⌦D(.) is known to be a semi-norm if and only if D is centrally symmetric, and it becomes
a norm if additionally 0 2 int(D) [Roc97], or see also the discussion in [CRPW12].
The support function of an atomic domain is obtained by taking the largest inner product with

an atomic element, ⌦⇤
D(x) = sup

s2Ahs,xi, which is often easier to compute than a maximum
over the full domain conv(A). This follows directly from the definition of the convex hull,
implying that any linear function attains its maximum over a convex hull at a vertex, or formally
⌦⇤
A(.) = ⌦⇤

conv(A)

(.). This key property enables the e�cient application of the Frank-Wolfe
algorithm for atomic domains in the following.

Frank-Wolfe Algorithms for Optimizing over Atomic Domains. In Table 1, we summarize
a variety of atomic domains D, over which convex optimization problems of the form (1) can
be solved e�ciently by the presented Frank-Wolfe methods, using O

�

1

"

�

iterations. Depending
on the structure of the atoms, this means that the Frank-Wolfe iterates x will often inherit
some of this structure, such as sparsity or low rank. In the next subsections we explain these
domains more precisely and comment on the computational complexity of the respective linear
subproblems. Note that the use of unit ball (or gauge) domains comes with no loss of generality,
since the argument of f(.) can be re-scaled by an arbitrary constant.

4.1. Optimizing over Vectors

Sparse Vectors / `
1

-Ball / Simplex. The convex hull of the signed unit basis vectors A =
{±e

i

| i 2 [n]} in Rn is the unit ball of the `
1

-norm. On the other hand, the unit simplex is
the convex hull of the unit basis vectors. The use of Frank-Wolfe-type greedy algorithms for
finding sparse vectors which optimize a convex function over such domains is well-studied in the
literature, see e.g. [Cla10] and the references therein. This motivated by the many prominent
applications such as for example Lasso regression [Tib96] in statistics, sparse recovery [MZ93]
in signal processing, and also many machine machine learning tasks, where e.g. boosting (Ad-
aboost), support vector machines [GJ09, Cla10, OG10], and density estimation [LB99, BLJO12]

10

Martin Jaggi
 CMAP - École Polytechnique,
 ERC SIPA project,
 CNRS UMR 7641, Paris, France

