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Introduction: There are two types of first-order :
methods for constrained convex optimization. One

of them became nearly forgotten in the last decades.

Contributions: Stronger and more general primal- :
dual convergence results for Frank-VVolfe methods,
and a unified view on many variants and applications.
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The Frank-Wolfe Algorithm

(or Cond’tlonal grad’ent) LTI
. ldea: Minimize a :

linear approximation of f :

" Algorithm 1 Frank-Wolfe

Let 29 € D
for k=0... K do
Compute s := arg min <s’, Vf(w(k))>

9 s’ €D
Update £*+tD .= (1 — y)x®) + s
..... edfor ==
Advantages Gradient
Frank-Wolfe Methods
lterates Sparse ¥ Dense X
(using at most k atoms
dfter k iterations)
Iteration Cost Linear oracle Projection
Example: (can be much cheaper) step
trace-norm top EV full SVD

Algorithm Variants

 Approximate subproblems
and inexact gradients (or inexact domain)
(using approximate linear minimizers S )

 Line-search
for the optimal step-size 7 € [0, 1]

* Fully corrective
(re-optimizing over all used 5 )
* Away steps
(removing the worst of all used S )

For two sets Consider the outer-product matrices
mxr
Alets € R A e {LRT éGjleft 7}
T C Aright
Ari C R™XT rig
oht =

D := conv(A)

-> every FW iteration is a low=rank update

Natural way to optimize over matrix factorizations
(including sparse and non-negative ones)

r Aery € R X" Aright C R™X" Qconv(A) (M) Q:kél(M) FW step
1 | ||.|l;-sphere ||.||,-sphere | Trace norm ||M]|,. | M|, Lanczos, see Table 1| -
1 | ||.|,-sphere ||.||,-sphere | Vector £;-norm || M||; || M]oe O(nm)
1 | ||.||.-sphere ||.|| . -sphere Cut-norm ||.||,_,; | NP-hard
n+m| ||.[|y o -1l2.00 Max-norm ||M|| .. SDP, see Table 1
L |l nRZy -l NRE, “non-neg. trace norm” NP-hard [MK87]
1 | Simplex A,, Simplex A,, | “non-neg. matrix /1-norm” O(nm)
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. Constrained convex optim. :

min f(z)

D compact, f differentiable

SRR . A USCfUI & efﬁcient
| : certificate for
- g(x) the approximation

quality
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Duality Gap

(for any bounded constrained probem)

Primal Rate Primal-Dual Rate

: 7C
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Curvature constant (' is bounded by the Lipschitz constant of the gradient, times diameter:
Cr < diam”.H (D)QL w.r.t. any choice of norm! (our algorithms/analysis are norm-free)

Affine Invariance Optimal Sparsity & Rate

The algorithms and our analysis The obtained sparsity k is optimal

- are fully invariant under (affine) for an approximation quality of |/k

transformatlons Of the |nPUt taSk N N Ih ..... db ....... o
. O algorithm can do better In genera

N 4 Lower bounds for sparsity (I[-domain) and low-rank (trace-norm domain)

Contrasting gradient methods which use projections and norms

Applications to sparse and low-rank optimization

Generalized sparsity problems: Usually in machine learning and signal processing

applications, we optimize over a domain D := conv(A) | that is the convex hull of a
simple set of things/atoms (atomic norm idea).

For such problems, Frank-Wolfe methods are particularly suitable:

X Optimization Domain Complexity of one Frank-Wolfe Iteration
Atoms A D = conv(A) %5 (y) = sup(s,y) Complexity
seD
R™ Sparse vectors ||{-ball Y|l O(n)
R™ Sign-vectors || -ball Y|, O(n)
R™ ¢,-Sphere || ,-ball yll, O(n)
R™ Sparse non-neg. vectors Simplex A, max;{y; } O(n)
R™ Latent group sparse vect. ||.||;-ball max,eg Hy(g) Z D geg 9]
R™>™ | Matrix trace norm |l,,-ball yll,, =o1(y) O(Nf/\/e’) (Lanczos)
R™>™ | Matrix operator norm |l,,-Pall yll.,. = ||(g:(y))|l; SVD
R™*™ | Schatten matrix norms (o:())]] ,~ball (o;(y))]| . SVD
R™*™ | Matrix max-norm |, ax-all O(Nf(n +m)!°/e"2?)
R™*™ | Permutation matrices Birkhoff polytope O(n°)
R™*™ | Rotation matrices SVD (Procrustes prob.)
ST | R it traas {z = 0, Tr(z) =1} | Amax(y) é(Nf / \/5/) (Lanczos)
S™X™ | of bounded. disgonal {r =0, z;; <1j O(Njn'?/e"?)

Table 1: Some examples of atomic domains suitable for optimization using the Frank-Wolfe algorithm.
Here SVD refers to the complexity of computing a singular value decomposition, which s
O(min{mn?, m?n}). Ny is the number of non-zero entries in the gradient of the objective func-
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tion f, and &' = g—+2 is the required accuracy for the linear subproblems. For any p € [1, 0],

the conjugate value q is meant to satisfy % +% =1, allowing q = oo for p =1 and vice versa.

Many other application such as optimizing over structured atomic norms,
matrix factorizations, and submodular optimization



