Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization

Constrained convex optim.

 $\min f(\boldsymbol{x})$

 \mathcal{D} compact, f differentiable

useful & efficient

certificate for

the approximation

 $oldsymbol{x}{\in}\mathcal{D}$

Setup

 $g(\boldsymbol{x})$

Introduction: There are two types of *first-order methods* for constrained convex optimization. One of them became nearly forgotten in the last decades.

Contributions: Stronger and more general primaldual convergence results for Frank-Wolfe methods, and a unified view on many variants and applications.

The Frank-Wolfe Algorithm

(or conditional gradient)

Idea: Minimize a

dvantag	Gradient Methods	
Iterates	Sparse √ (using at most k atoms after k iterations)	Dense 🗡
teration Cost	Linear oracle	Projection

$$g(\mathbf{x}) := \max_{\mathbf{s} \in \mathcal{D}} \langle \mathbf{x} - \mathbf{s}, \nabla f(\mathbf{x}) \rangle$$
Duality Gap
(for any bounded constrained probem)

quality

Convergence Results

For all algorithm variants!

Curvature constant C_f is bounded by the Lipschitz constant of the gradient, times diameter: $C_f \leq \operatorname{diam}_{\parallel,\parallel}(\mathcal{D})^2 L$ w.r.t. any choice of norm! (our algorithms/analysis are norm-free)

Affine Invariance

.

Optimal Sparsity & Rate

Example:	(cui be much cheuper)	scep
trace-norm	top EV	full SVD

Algorithm Variants

• Approximate subproblems

and *inexact gradients* (or inexact domain) (using approximate linear minimizers *S*)

• Line-search

for the optimal step-size $\gamma \in [0, 1]$

• Fully corrective

(re-optimizing over all used S)

• Away steps (removing the worst of all used *S*)

Factorized Matrix Domains

The *algorithms* and our *analysis* are fully *invariant* under (affine) transformations of the input task

Contrasting gradient methods which use projections and norms

The obtained **sparsity** k is **optimal** for an approximation **quality** of 1/k

No algorithm can do better in general Lower bounds for *sparsity* (*I1*-domain) and *low-rank* (trace-norm domain)

Applications to sparse and low-rank optimization

Generalized sparsity problems: Usually in machine learning and signal processing applications, we optimize over a domain $\mathcal{D} := \operatorname{conv}(\mathcal{A})$, that is the convex hull of a simple set of things/atoms (**atomic norm** idea).

For such problems, Frank-Wolfe methods are *particularly suitable*:

\mathcal{X}	Optimization Domain		Complexity of one Frank-Wolfe Iteration		
	Atoms \mathcal{A}	$\mathcal{D} = \operatorname{conv}(\mathcal{A})$	$\Omega^*_{\mathcal{D}}(oldsymbol{y}) = \sup_{oldsymbol{\sigma}} \langle oldsymbol{s}, oldsymbol{y} angle$	Complexity	
•			$ $ $s \in \mathcal{D}$		
\mathbb{R}^n	Sparse vectors	$\ .\ _1$ -ball	$ig \ oldsymbol{y}\ _{\infty}$	O(n)	
\mathbb{R}^n	Sign-vectors	$\ .\ _{\infty}$ -ball	$\ \ oldsymbol{y} \ _1$	O(n)	
\mathbb{R}^n	ℓ_p -Sphere	$\ .\ _p$ -ball	$\ \ oldsymbol{y} \ _q$	O(n)	
\mathbb{R}^n	Sparse non-neg. vectors	Simplex Δ_n	$\max_{i} \{ \boldsymbol{y}_{i} \}$	O(n)	
\mathbb{R}^n	Latent group sparse vect.	$\ .\ _{\mathcal{G}}$ -ball	$\left\ \max_{g\in\mathcal{G}}\left\ \boldsymbol{y}_{(g)}\right\ _{g}^{*}\right\ $	$\sum_{g \in \mathcal{G}} g $	
$\boxed{\mathbb{R}^{m \times n}}$	Matrix trace norm	$\ .\ _{tr}$ -ball	$ig \ oldsymbol{y}\ _{op} = \sigma_1(oldsymbol{y})$	$\tilde{O}(N_f/\sqrt{\varepsilon'})$ (Lanczos)	
$\mathbb{R}^{m \times n}$	Matrix operator norm	$\ .\ _{op}$ -ball	$\left\ \boldsymbol{y} \right\ _{tr} = \left\ (\sigma_i(\boldsymbol{y})) \right\ _1$	SVD	
$\mathbb{R}^{m \times n}$	Schatten matrix norms	$\ (\sigma_i(.))\ _p$ -ball	$\ \ (\sigma_i(\boldsymbol{y})) \ _q$	SVD	
$\mathbb{R}^{m imes n}$	Matrix max-norm	$\ .\ _{\max}$ -ball		$\tilde{O}(N_f(n+m)^{1.5}/\varepsilon'^{2.5})$	
$\mathbb{R}^{n \times n}$	Permutation matrices	Birkhoff polytope		$O(n^3)$	
$\mathbb{R}^{n \times n}$	Rotation matrices			SVD (Procrustes prob.)	
$\mathbb{S}^{n \times n}$	Rank-1 PSD matrices of unit trace	$\{\boldsymbol{x} \succeq 0, \operatorname{Tr}(\boldsymbol{x}) = 1\}$	$\lambda_{ ext{max}}(oldsymbol{y})$	$\tilde{O}(N_f/\sqrt{\varepsilon'})$ (Lanczos)	
$\mathbb{S}^{n \times n}$	PSD matrices of bounded diagonal	$\{ \boldsymbol{x} \succeq 0, \ \boldsymbol{x}_{ii} \leq 1 \}$		$\tilde{O}(N_f n^{1.5} / \varepsilon'^{2.5})$	

For two setsConsider the outer-product matrices $\mathcal{A}_{left} \subseteq \mathbb{R}^{m \times r}$ $\mathcal{A} := \left\{ LR^T \mid \begin{array}{c} L \in \mathcal{A}_{left} \\ R \in \mathcal{A}_{right} \end{array} \right\}$ $\mathcal{A}_{right} \subseteq \mathbb{R}^{n \times r}$ $\mathcal{D} := \operatorname{conv}(\mathcal{A})$

every FW iteration is a low-rank update

Natural way to optimize over *matrix factorizations* (including sparse and *non-negative* ones)

[r	$\mathcal{A}_{\text{left}} \subseteq \mathbb{R}^{m \times r}$	$\mathcal{A}_{\mathrm{right}} \subseteq \mathbb{R}^{n \times r}$	$\Omega_{\operatorname{conv}(\mathcal{A})}(M)$	$\Omega^*_{\mathcal{A}}(M)$	FW step
	1	$\ .\ _2$ -sphere	$\ .\ _2$ -sphere	Trace norm $\ M\ _{tr}$	$\ M\ _{op}$	Lanczos, see Table 1
	1	$\ .\ _1$ -sphere	$\ .\ _1$ -sphere	Vector ℓ_1 -norm $\ \vec{M}\ _1$	$\ ec{M}\ _\infty$	O(nm)
	1	$\ .\ _{\infty}$ -sphere	$\ .\ _{\infty}$ -sphere		Cut-norm $\ .\ _{\infty \to 1}$	NP-hard
	n+m	$\left\ .\right\ _{2,\infty}$	$\left\ .\right\ _{2,\infty}$	Max-norm $\ M\ _{\max}$		SDP, see Table 1
	1	$\left\ .\right\ _2 \cap \mathbb{R}^m_{\geq 0}$	$\ .\ _2 \cap \mathbb{R}^n_{\geq 0}$	"non-neg. trace norm"		NP-hard [MK87]
	1	Simplex $\overline{\Delta}_m$	Simplex $\overline{\Delta}_n$	"non-neg. matrix ℓ_1 -nor	m"	O(nm)

Table 1: Some examples of atomic domains suitable for optimization using the Frank-Wolfe algorithm. Here SVD refers to the complexity of computing a singular value decomposition, which is $O(\min\{mn^2, m^2n\})$. N_f is the number of non-zero entries in the gradient of the objective function f, and $\varepsilon' = \frac{\delta C_f}{k+2}$ is the required accuracy for the linear subproblems. For any $p \in [1, \infty]$, the conjugate value q is meant to satisfy $\frac{1}{p} + \frac{1}{q} = 1$, allowing $q = \infty$ for p = 1 and vice versa.

Many other application such as optimizing over structured atomic norms, matrix factorizations, and submodular optimization