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Abstract
We provide stronger and more general
primal-dual convergence results for Frank-
Wolfe-type algorithms (a.k.a. conditional
gradient) for constrained convex optimiza-
tion, enabled by a simple framework of du-
ality gap certificates. Our analysis also holds
if the linear subproblems are only solved ap-
proximately (as well as if the gradients are
inexact), and is proven to be worst-case opti-
mal in the sparsity of the obtained solutions.

On the application side, this allows us to
unify a large variety of existing sparse greedy
methods, in particular for optimization over
convex hulls of an atomic set, even if those
sets can only be approximated, including
sparse (or structured sparse) vectors or ma-
trices, low-rank matrices, permutation matri-
ces, or max-norm bounded matrices.
We present a new general framework for con-
vex optimization over matrix factorizations,
where every Frank-Wolfe iteration will con-
sist of a low-rank update, and discuss the
broad application areas of this approach.

1. Introduction

Our work here addresses general constrained convex
optimization problems of the form

min
x2D

f(x) . (1)

We assume that the objective function f is convex and
continuously di↵erentiable, and that the domain D is a
compact convex subset of any vector space1. For such
optimization problems, one of the simplest and earliest
known iterative optimizers is given by the Frank-Wolfe
method (?), described in Algorithm ??, also known as
the conditional gradient method.

1Formally, we assume that the optimization domain D
is a compact and convex subset of a Hilbert space X , i.e.
a Banach space equipped with an inner product h., .i.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author. This
article builds upon the author’s PhD thesis (?).
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the linearization of the objective function, and moves
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towards a minimizer of
this linear function (taken
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In terms of conver-
gence, it is known
that the iterates of
Algorithm ?? satisfy
f(x(k)) � f(x⇤)  O

�

1

k

�

,
for x

⇤ being an optimal
solution to (??) (??). In recent years, Frank-Wolfe-
type methods have re-gained interest in several areas,
fueled by the good scalability, and the crucial property
that Algorithm ?? maintains its iterates as a convex
combination of only few “atoms” s, enabling e.g.
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• Approximate 
Subproblems
               [ Dunn et al. 1978 ]

• Away-Steps
               [ Guélat et al. 1986 ]

Algorithm Variants

Line-Search
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• Primal-Dual Analysis
  with certificates for approximation quality

• Approximate Subproblems
  and inexact gradients (and domains)

• Affine Invariance

• Lower Bound
and optimality in terms of sparsity

• More Applications
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Convergence Analysis

[ Frank & Wolfe 1956,
  Dunn et al. 1978, 1980  :

Here: For all algorithm variants, 
and affine invariant

Primal Rate

Lemma 1. Let f be a convex and di↵erentiable function with its gradient rf being Lipschitz-
continuous w.r.t. some norm k.k over the domain D with Lipschitz-constant L > 0. Then

C
f

 diamk.k(D)2L .

Proof. By [?, Lemma 1.2.3], we have that for any x,y 2 D,

f(y)� f(x)� hy � x,rf(x)i  L

2

ky � xk2

We want to use this upper bound in the definition (??) of the curvature constant. Observing
that for any x, s 2 D, we have that also y := x + �(s � x) 2 D and 1

�

2 ky � xk2 = ks� xk2,
we can therefore upper bound the curvature as

C
f

 sup 2

�

2
L

2

ky � xk2 = supL ks� xk2  L diamk.k(D)2 ,

which is the claimed bound.

A direct motivation to consider the quantity C
f

in connection with Frank-Wolfe methods
follows if we imagine moving from a current point x towards a next “iterate” y := x+�(s�x),
for any relative “step-size” � 2 [0, 1]. Bounded C

f

then means that the deviation of f at y from
the linearization of f at x is bounded, where the acceptable deviation is weighted by the inverse
of the squared step-size �. The defining term f(y)�f(x)�hy�x,rf(x)i is also widely known
as the Bregman divergence defined by f .

In applications, it is not always possible to compute the constant C
f

exactly. However, for all
algorithms we consider here, and also their analysis, it is su�cient to know some upper bound
on C

f

, such as for example some upper bound on the Lipschitz constant of the gradient, in view
of Lemma ??.

3.2 Convergence in Primal Error

The following theorem shows that after O
�

1

"

�

many iterations, the iterate x

(k) of any of the
Frank-Wolfe algorithm variants ??, ??, ??, and ?? is an "-approximate solution to problem
(??), i.e. it satisfies f(x(k))  f(x⇤) + ", for x⇤ being an optimal solution.

Compared to the existing convergence results in the literature [?, ?, ?, ?, ?, ?], our following
proof more clearly highlights the dependence on the approximation quality � of the linear sub-
problems, holds for all algorithm variants, and will prepare us for the main result of convergence
in the duality gap in the next Section. Later, in Section ??, we will also show that the resulting
convergence rate is indeed best possible for any algorithm that adds only one new atom per
iteration.

Theorem 2 (Primal Convergence). For each k � 1, the iterates x

(k) of Algorithms ??, ??, ??,
and ?? satisfy

f(x(k))� f(x⇤) 
2C

f

k + 2
(1 + �) ,

where x

⇤ 2 D is an optimal solution to problem (??), and � � 0 is the accuracy to which the
internal linear subproblems are solved (i.e. � = 0 for Algorithm ??).

The proof of the above primal convergence rate theorem crucially depends on the following
Lemma ??, showing that the curvature provides a “quadratic” model / upper bound on our
objective function. Using this model, the Lemma quantifies the improvement in each algorithm
iteration, expressing this improvement in terms of the current duality gap. Applying the lemma,
the convergence proof then follows along the same idea as in [?, Theorem 2.3]. A full proof is
given in Appendix ?? for completeness. Note that a weaker variant of Lemma ?? for the exact
case � = 0 was already proven by [?].

6

O
�
1
k

�

B. Primal-Dual Convergence

Theorem’ 4 (Primal-Dual Convergence). If Algorithm 1, 2, 3 or 4 is run for K � 2 iterations,

then the algorithm has an iterate x

(

ˆ

k), 1  k̂  k, with duality gap bounded by

g(x(

ˆ

k)) 
2�C

f

k + 2
(1 + �) ,

g(x(

ˆ

k)) 
7C

f

k + 2
,

where � = 27

8

= 3.375, and � � 0 is the accuracy to which the linear subproblems are solved.

Proof. We will actually prove that the iterate of small duality gap will appear in the last third
of the K iterations. To simplify notation, we will denote the primal and dual errors for any
iteration k � 0 in the algorithm by h(k) := h(x(k)) and g(k) := g(x(k)).
By our previous primal convergence Theorem 2, we already know that the primal error satisfies

h(k) = E[f(x(k))]� f(x⇤)  C

k+2

in any iteration k, where we use the notation C := 2C
f

(1 + �).

In the last third of the k iterations, we will now suppose that g(k) always stays larger than
�C

K+2

. We will derive a contradiction to this assumption. We write D := K + 2 to simplify the
notation. Formally, we assume that

g(k) > �C

D

for k 2
�

dµDe � 2 , . . . , K
 

.

Here the parameter 0 < µ < 1 is arbitrary fixed, but we will see later that a good choice for
this parameter is given by µ := 2

3

.
Now employing the crucial improvement bound from Lemma 3 for the choice of � := 2

k+2

, we

have h(k+1)  h(k) � �g(k) + �

2

2

C
f

(1 + �). This bound from Lemma 3 holds no matter if x(k+1)

is obtained by using the pre-defined step-size, or using line-search, or by re-optimizing over the

previous directions, since f(x(k+1)

Re-Opt)  f(x(k+1)

Line-Search)  f(x(k+1)

�

). Therefore, we have

h(k+1)  h(k) � 2

k+2

g(k) + 2

(k+2)

2Cf

(1 + �)

= h(k) � 2

k+2

g(k) + C

(k+2)

2 .

Plugging in our assumption that the duality gap is still “large”, we obtain

h(k+1) < h(k) � 2

k+2

�C

D

+ C

(k+2)

2 .

Now we use that in our last third of the steps, our � := 2

k+2

is neither too large nor too small:

More precisely, if we define k
min

:= dµDe � 2 (note that k
min

� 0 if K � 1�µ

µ

2), and consider
the steps in k

min

 k  K, then µD  k + 2  D, so that our bound now reads as

h(k+1) < h(k) � 2

D

�C

D

+ C

(µD)

2

= h(k) � 2�C�C/µ

2

D

2 .

We will now sum up this inequality over the last third of the steps from k = k
min

up to k = K.
These are at least K � k

min

+ 1 = K � (dµDe � 2) + 1 � (1� µ)D =: n
3

many steps, resulting
in

h(K+1) < h(kmin) � n
3

2�C�C/µ

2

D

2

 C

µD

� n
3

2µ��1/µ

D

C

µD

= C

µD

⇣

1� n
3

2µ��1/µ

D

⌘

.

here in the last inequality we have just used the primal convergence Theorem 2 giving h(kmin) 
C

kmin+2

 C

µD

. This completes the proof, since we arrive at the contradiction that the primal

error becomes negative, i.e. h(K+1) < 0, when we plug in the claimed values for µ := 2

3

and

� := 27

8

. Indeed, this pair of values will make the following term become zero: 1�n
3

2µ��1/µ

D

=
1� (1� µ)(2µ� � 1/µ) = 1� 1

3

(29

4

� 3

2

) = 0.
Therefore, our assumption on the gap is refuted, and we have proven the claimed bound.
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efficient certificates 
for approximation quality

positive side however, the re-optimization over the convex hull of the k+2 atoms s

(0), . . . , s(k+1)

does not have to be done exactly. For the convergence guarantee to hold, we are allowed to
use any candidate x whose objective value is at least as good as the fixed-step-size point from

Algorithm 2, which is x

(k+1)

classic := (1 � �)x(k) + �s.
For complicated objective functions, an alternative variant is to replace the re-optimization

of the true objective by instead re-optimizing over the (simpler) quadratic upper bound defined
by the Lipschitz constant of the gradient (or curvature, see Section 3.1). In this case, the same
convergence guarantees still apply. Algorithm 4 for the case of the quadratic objective x

T
x is

also known as the minimum-norm-point algorithm [Bac11].
When applied to the `

1

-ball domain, Algorithm 4 is very close to orthogonal matching pursuit
[DMZ94, TG07], which is among the most popular algorithms in signal processing (the di↵erence
being that the later applies to an unconstrained domain, corresponding to a scaled-up `

1

-ball,
such that the Frank-Wolfe iterates do not reach the boundary of the domain).

The fully corrective variant is sometimes also called the “simplicial decomposition method”
[Ber10]. In computational geometry, the fully corrective method has been used to prove exis-
tence results for coresets, e.g. for the smallest enclosing ball problem. Here it is known that
compared to the cheaper Algorithm 1, it can produce coresets of roughly half the size [Cla10].
Recently, [YY12] suggested the use of Newton-type heuristics to solve the subproblems in Al-
gorithm 4.

Away-Steps. Another important variant is the use of away-steps, as explained in [GM86],
which we can unfortunately not discuss in detail here due to the lack of space. The idea is
that in each iteration, we not only add a new atom s, but potentially also remove an old atom
(provided it is bad with respect to our objective). This requires that the iterate x is represented
explicitly as a convex combination of the current atoms. Similarily as for the fully corrective
Algorithm 4 above, this variant can improve the sparsity of the iterates [Cla10]. Using away-
steps, it is known that a faster linear convergence can be obtained for some special problem
class [GM86].

3.1. The Curvature

The convergence analysis of Frank-Wolfe type algorithms crucially relies on a measure of “non-
linearity” of our objective function f over the domain D. The curvature constant Cf of a convex
and di↵erentiable function f : Rn ! R, with respect to a compact domain D is defined as

Cf := sup
x,s2D,
�2[0,1],

y=x+�(s�x)

2

�2

�

f(y) � f(x) � hy � x, rf(x)i
�

. (3)

The curvature constant Cf is a general measure of the di�culty of a constrained smooth
optimization problem of the form (1). By quantifying the deviation of the objective function f
from its linearizations over the domain D, it incorporates both degrees of “di�culty” coming
from f as well as from D. For linear functions f for example, it holds that Cf = 0. For a
quadratic f(x) := 1

2

x

T
x on Rn, Cf becomes the squared Euclidean diameter of the domain D.

The assumption of bounded curvature Cf closely corresponds to a Lipschitz assumption on
the gradient of f (sometimes called Cf -strong smoothness). More precisely, it is not hard to see
that Cf is upper bounded by any Lipschitz constant of the gradient, times the squared diameter
of the domain, in the same chosen norm, as formulated in following Lemma 1. Note that the
curvature constant Cf itself (as well as the algorithms) do not depend on the choice of a norm.

While the early papers [FW56, Dun79] on the Frank-Wolfe algorithm directly relied on some
Lipschitz constant with respect to a chosen norm, the definition (3) here has the advantage of
being invariant under a�ne transformations of the input problem, making both the algorithm
and the analysis fully a�ne invariant, as we will discuss in more details in Section 3.7. While

5

Curvature constant

the formulation (3) has been introduced by [Cla10] for D being the unit simplex2, we are not
aware of an earlier definition of the constant for general sets D in the setting here.

Lemma 1. Let f be a convex and di↵erentiable function with its gradient rf being Lipschitz-
continuous w.r.t. some norm k.k over the domain D with Lipschitz-constant L > 0. Then

Cf  diamk.k(D)2L .

Proof. By [Nes04, Lemma 1.2.3], we have that for any x, y 2 D,

f(y) � f(x) � hy � x, rf(x)i  L
2

ky � xk2

We want to use this upper bound in the definition (3) of the curvature constant. Observing
that for any x, s 2 D, we have that also y := x + �(s � x) 2 D and 1

�2 ky � xk2 = ks � xk2,
we can therefore upper bound the curvature as

Cf  sup 2

�2
L
2

ky � xk2 = supL ks � xk2  L diamk.k(D)2 ,

which is the claimed bound.

A direct motivation to consider the quantity Cf in connection with Frank-Wolfe methods
follows if we imagine moving from a current point x towards a next “iterate” y := x+�(s�x),
for any relative “step-size” � 2 [0, 1]. Bounded Cf then means that the deviation of f at y from
the linearization of f at x is bounded, where the acceptable deviation is weighted by the inverse
of the squared step-size �. The defining term f(y)�f(x)�hy�x, rf(x)i is also widely known
as the Bregman divergence defined by f .

In applications, it is not always possible to compute the constant Cf exactly. However, for all
algorithms we consider here, and also their analysis, it is su�cient to know some upper bound
on Cf , such as for example some upper bound on the Lipschitz constant of the gradient, in view
of Lemma 1.

3.2. Convergence in Primal Error

The following theorem shows that after O
�

1

"

�

many iterations, the iterate x

(k) of any of the
Frank-Wolfe algorithm variants 1, 2, 3, and 4 is an "-approximate solution to problem (1), i.e.
it satisfies f(x(k))  f(x⇤) + ", for x

⇤ being an optimal solution.
Compared to the existing convergence results in the literature [DH78, Dun79, Jon92, Pat93,

Zha03, Cla10], our following proof more clearly highlights the dependence on the approximation
quality � of the linear subproblems, holds for all algorithm variants, and will prepare us for the
main result of convergence in the duality gap in the next Section. Later, in Section 3.8, we
will also show that the resulting convergence rate is indeed best possible for any algorithm that
adds only one new atom per iteration.

Theorem 2 (Primal Convergence). For each k � 1, the iterates x

(k) of Algorithms 1, 2, 3, and 4
satisfy

f(x(k)) � f(x⇤) 
2Cf

k + 2
(1 + �) ,

where x

⇤ 2 D is an optimal solution to problem (1), and � � 0 is the accuracy to which the
internal linear subproblems are solved (i.e. � = 0 for Algorithm 1).

The proof of the above primal convergence rate theorem crucially depends on the following
Lemma 3, showing that the curvature provides a “quadratic” model / upper bound on our
objective function. Using this model, the Lemma quantifies the improvement in each algorithm
iteration, expressing this improvement in terms of the current duality gap. Applying the lemma,
the convergence proof then follows along the same idea as in [Cla10, Theorem 2.3]. A full proof
is given in Appendix A for completeness. Note that a weaker variant of Lemma 3 for the exact
case � = 0 was already proven by [FW56].

2Note that the curvature definition of [Cla10, Jag11] di↵ers by a constant of 2 from the notation used here.
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Convergence

Lemma 1. Let f be a convex and di↵erentiable function with its gradient rf being Lipschitz-
continuous w.r.t. some norm k.k over the domain D with Lipschitz-constant L > 0. Then

C
f

 diamk.k(D)2L .

Proof. By [?, Lemma 1.2.3], we have that for any x,y 2 D,

f(y)� f(x)� hy � x,rf(x)i  L

2

ky � xk2

We want to use this upper bound in the definition (??) of the curvature constant. Observing
that for any x, s 2 D, we have that also y := x + �(s � x) 2 D and 1

�

2 ky � xk2 = ks� xk2,
we can therefore upper bound the curvature as

C
f

 sup 2

�

2
L

2

ky � xk2 = supL ks� xk2  L diamk.k(D)2 ,

which is the claimed bound.

A direct motivation to consider the quantity C
f

in connection with Frank-Wolfe methods
follows if we imagine moving from a current point x towards a next “iterate” y := x+�(s�x),
for any relative “step-size” � 2 [0, 1]. Bounded C

f

then means that the deviation of f at y from
the linearization of f at x is bounded, where the acceptable deviation is weighted by the inverse
of the squared step-size �. The defining term f(y)�f(x)�hy�x,rf(x)i is also widely known
as the Bregman divergence defined by f .

In applications, it is not always possible to compute the constant C
f

exactly. However, for all
algorithms we consider here, and also their analysis, it is su�cient to know some upper bound
on C

f

, such as for example some upper bound on the Lipschitz constant of the gradient, in view
of Lemma ??.

3.2 Convergence in Primal Error

The following theorem shows that after O
�

1

"

�

many iterations, the iterate x

(k) of any of the
Frank-Wolfe algorithm variants ??, ??, ??, and ?? is an "-approximate solution to problem
(??), i.e. it satisfies f(x(k))  f(x⇤) + ", for x⇤ being an optimal solution.

Compared to the existing convergence results in the literature [?, ?, ?, ?, ?, ?], our following
proof more clearly highlights the dependence on the approximation quality � of the linear sub-
problems, holds for all algorithm variants, and will prepare us for the main result of convergence
in the duality gap in the next Section. Later, in Section ??, we will also show that the resulting
convergence rate is indeed best possible for any algorithm that adds only one new atom per
iteration.

Theorem 2 (Primal Convergence). For each k � 1, the iterates x

(k) of Algorithms ??, ??, ??,
and ?? satisfy

f(x(k))� f(x⇤) 
2C

f

k + 2
(1 + �) ,

where x

⇤ 2 D is an optimal solution to problem (??), and � � 0 is the accuracy to which the
internal linear subproblems are solved (i.e. � = 0 for Algorithm ??).

The proof of the above primal convergence rate theorem crucially depends on the following
Lemma ??, showing that the curvature provides a “quadratic” model / upper bound on our
objective function. Using this model, the Lemma quantifies the improvement in each algorithm
iteration, expressing this improvement in terms of the current duality gap. Applying the lemma,
the convergence proof then follows along the same idea as in [?, Theorem 2.3]. A full proof is
given in Appendix ?? for completeness. Note that a weaker variant of Lemma ?? for the exact
case � = 0 was already proven by [?].
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For complicated objective functions, an alternative variant is to replace the re-optimization

of the true objective by instead re-optimizing over the (simpler) quadratic upper bound defined
by the Lipschitz constant of the gradient (or curvature, see Section 3.1). In this case, the same
convergence guarantees still apply. Algorithm 4 for the case of the quadratic objective x
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x is

also known as the minimum-norm-point algorithm [Bac11].
When applied to the `
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[DMZ94, TG07], which is among the most popular algorithms in signal processing (the di↵erence
being that the later applies to an unconstrained domain, corresponding to a scaled-up `
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such that the Frank-Wolfe iterates do not reach the boundary of the domain).
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compared to the cheaper Algorithm 1, it can produce coresets of roughly half the size [Cla10].
Recently, [YY12] suggested the use of Newton-type heuristics to solve the subproblems in Al-
gorithm 4.

Away-Steps. Another important variant is the use of away-steps, as explained in [GM86],
which we can unfortunately not discuss in detail here due to the lack of space. The idea is
that in each iteration, we not only add a new atom s, but potentially also remove an old atom
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explicitly as a convex combination of the current atoms. Similarily as for the fully corrective
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steps, it is known that a faster linear convergence can be obtained for some special problem
class [GM86].
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from its linearizations over the domain D, it incorporates both degrees of “di�culty” coming
from f as well as from D. For linear functions f for example, it holds that Cf = 0. For a
quadratic f(x) := 1
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T
x on Rn, Cf becomes the squared Euclidean diameter of the domain D.

The assumption of bounded curvature Cf closely corresponds to a Lipschitz assumption on
the gradient of f (sometimes called Cf -strong smoothness). More precisely, it is not hard to see
that Cf is upper bounded by any Lipschitz constant of the gradient, times the squared diameter
of the domain, in the same chosen norm, as formulated in following Lemma 1. Note that the
curvature constant Cf itself (as well as the algorithms) do not depend on the choice of a norm.

While the early papers [FW56, Dun79] on the Frank-Wolfe algorithm directly relied on some
Lipschitz constant with respect to a chosen norm, the definition (3) here has the advantage of
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continuous w.r.t. some norm k.k over the domain D with Lipschitz-constant L > 0. Then
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Proof. By [Nes04, Lemma 1.2.3], we have that for any x, y 2 D,
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A direct motivation to consider the quantity Cf in connection with Frank-Wolfe methods
follows if we imagine moving from a current point x towards a next “iterate” y := x+�(s�x),
for any relative “step-size” � 2 [0, 1]. Bounded Cf then means that the deviation of f at y from
the linearization of f at x is bounded, where the acceptable deviation is weighted by the inverse
of the squared step-size �. The defining term f(y)�f(x)�hy�x, rf(x)i is also widely known
as the Bregman divergence defined by f .

In applications, it is not always possible to compute the constant Cf exactly. However, for all
algorithms we consider here, and also their analysis, it is su�cient to know some upper bound
on Cf , such as for example some upper bound on the Lipschitz constant of the gradient, in view
of Lemma 1.
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The following theorem shows that after O
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Frank-Wolfe algorithm variants 1, 2, 3, and 4 is an "-approximate solution to problem (1), i.e.
it satisfies f(x(k))  f(x⇤) + ", for x

⇤ being an optimal solution.
Compared to the existing convergence results in the literature [DH78, Dun79, Jon92, Pat93,

Zha03, Cla10], our following proof more clearly highlights the dependence on the approximation
quality � of the linear subproblems, holds for all algorithm variants, and will prepare us for the
main result of convergence in the duality gap in the next Section. Later, in Section 3.8, we
will also show that the resulting convergence rate is indeed best possible for any algorithm that
adds only one new atom per iteration.

Theorem 2 (Primal Convergence). For each k � 1, the iterates x

(k) of Algorithms 1, 2, 3, and 4
satisfy
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where x

⇤ 2 D is an optimal solution to problem (1), and � � 0 is the accuracy to which the
internal linear subproblems are solved (i.e. � = 0 for Algorithm 1).

The proof of the above primal convergence rate theorem crucially depends on the following
Lemma 3, showing that the curvature provides a “quadratic” model / upper bound on our
objective function. Using this model, the Lemma quantifies the improvement in each algorithm
iteration, expressing this improvement in terms of the current duality gap. Applying the lemma,
the convergence proof then follows along the same idea as in [Cla10, Theorem 2.3]. A full proof
is given in Appendix A for completeness. Note that a weaker variant of Lemma 3 for the exact
case � = 0 was already proven by [FW56].
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Lower Bound

For an approximation quality of 1/k, 
any x must have at least k non-zeros.

⌦
�
1
k

�

Trade-Off: Approximation quality vs sparsity

(use at least k corners)



convex hull of things

Optimization over Atomic Sets

min
x2D

f(x)

D := conv (A)

[ Chandrasekaran et al. 2012 ]

A

http://dx.doi.org/10.1007/s10208-012-9135-7
http://dx.doi.org/10.1007/s10208-012-9135-7


unit simplex

D := conv ({ei | i 2 [n]})

Trade-Off: 
Approximation quality vs sparsity

[ Clarkson 2008 ]

Corollary:
Obtain               -approximate 
solution of sparsity      .k

O
�
1
k

�

Sparse Approximation

lower bound:

⌦
�
1
k

�

f(x) := kxk22

min
x2�n

f(x)

http://portal.acm.org/citation.cfm?id=1347082.1347183&coll=GUIDE&dl=GUIDE&CFID=54983861&CFTOKEN=92505933
http://portal.acm.org/citation.cfm?id=1347082.1347183&coll=GUIDE&dl=GUIDE&CFID=54983861&CFTOKEN=92505933


Sparse Approximation

`1-ball

D := conv ({±ei | i 2 [n]})

min
kxk11

f(x)

lower bound:

⌦
�
1
k

�
Trade-Off: 
Approximation quality vs sparsity

Corollary:
Obtain               -approximate 
solution of sparsity      .k

O
�
1
k

�



Greedy meets Frank-Wolfe

Frank-Wolfe matching pursuit
selects the same 
atom per step

i := argmax

i
|rf(x)i|

fully corrective
Frank-Wolfe

OMP
equivalent to

 

min
x2L1

kAx� bk2
sparse recovery methodsmethods applied to

Convex optimization Signal processing

recover a sparse x from a
noisy measurement b of Ax

`1



Low Rank Approximation

D := conv

⇣n

uvT
�

�

�

u2Rn, kuk2=1
v2Rm, kvk2=1

o⌘

trace-norm-ball

min
kXk⇤1

f(X)

Projection:

Requires full SVD

FW-step:

approx. top singular vector [ J. & Sulovský 2010 ]

Trade-Off: 
Approximation quality vs rank

Corollary:
Obtain               -approximate 
solution of rank      .k

O
�
1
k

�

lower bound:

⌦
�
1
k

�

http://www.m8j.net/data/List/Files-149/fastRegNuclearNormOptimization.pdf
http://www.m8j.net/data/List/Files-149/fastRegNuclearNormOptimization.pdf


- norm problems`p
min

kxkp1
f(x)

Projection:

unknown?

FW-step:

linear time

-ball`pD :=

p=1. 3

p=4



Examples of Atomic Domains Suitable for Frank-Wolfe

X Optimization Domain Complexity of one Frank-Wolfe Iteration
Atoms A D = conv(A) sup

s2Dhs, yi Complexity

Rn Sparse Vectors k.k
1

-ball kyk1 O(n)
Rn Sign-Vectors k.k1-ball kyk

1

O(n)
Rn `

p

-Sphere k.k
p

-ball kyk
q

O(n)
Rn Sparse Non-neg. Vectors Simplex �

n

max
i

{y

i

} O(n)
Rn Latent Group Sparse Vec. k.kG-ball max

g2G
�

�

y

(g)

�

�

⇤
g

P

g2G |g|
Rm⇥n Matrix Trace Norm k.k

tr

-ball kyk
op

= �
1

(y) Õ
�

N
f

/
p

"0
�

(Lanczos)
Rm⇥n Matrix Operator Norm k.k

op

-ball kyk
tr

= k(�
i

(y))k
1

SVD
Rm⇥n Schatten Matrix Norms k(�

i

(.))k
p

-ball k(�
i

(y))k
q

SVD

Rm⇥n Matrix Max-Norm k.k
max

-ball Õ
�

N
f

(n + m)1.5/"02.5
�

Rn⇥n Permutation Matrices Birkho↵ polytope O(n3)
Rn⇥n Rotation Matrices SVD (Procrustes prob.)
Sn⇥n

Rank-1 PSD matrices

of unit trace

{x⌫0, Tr(x)=1} �
max

(y) Õ
�

N
f

/
p

"0
�

(Lanczos)
Sn⇥n

PSD matrices

of bounded diagonal

{x⌫0, xii1} Õ
�

N
f

n1.5/"02.5
�

Table 1: Some examples of atomic domains suitable for optimization using the Frank-Wolfe algorithm.
Here SVD refers to the complexity of computing a singular value decomposition, which is
O(min{mn2, m2n}). N

f

is the number of non-zero entries in the gradient of the objective func-

tion f , and "0 = 2�Cf

k+2

is the required accuracy for the linear subproblems. For any p 2 [1, 1],

the conjugate value q is meant to satisfy 1

p

+ 1

q

= 1, allowing q = 1 for p = 1 and vice versa.

turn out to be such problem instances. Clearly, every iteration will add at most one new non-
zero coordinate to x, and the linear subproblems consist of finding the largest entry of the
gradient.

The resulting trade-o↵ between the sparsity and the approximation quality is interesting. Our
above sparsity lower bounds from Lemmata 4 and 5 together with the upper bounds of O

�

1

"

�

from the convergence analysis show that the sparsity of the Frank-Wolfe iterates is indeed best
possible in terms of both primal an dual approximation quality. For optimizing over the simplex,
this trade-o↵ was also considered by [GJ09, Cla10], and by [SSSZ10] for the `

1

-ball (considering
primal error).

The `
p

-Ball. An exact Frank-Wolfe iteration only costs linear time when optimizing over any
`
p

-ball domain D, for p 2 [1, 1]. This follows by the duality of the `
p

and `
q

-norms, as in
Hölder’s inequality hs, yi  ksk

p

· kyk
q

(for p, q 2 [1, 1], 1

p

+ 1

q

= 1, allowing q = 1 for p = 1
and vice versa). An optimal solution s to the linear problem max

ˆ

s, kˆsk
p

1

ŝ

T

y can simply be

obtained from y by choosing |s
i

| / |y
i

|q�1, keeping the same signs. This also holds for the case
p = 1, q = 1, where the domain D becomes the cube.

Structured Atomic Norms. In recent years, structured norms have gained strong interest in
several areas of machine learning, computer vision, and signal processing, due to their ability
to induce more general and structured notions of sparsity, see e.g. [JAB11] for an overview.

Here we will focus on one large class of structured norms, proposed by [OJV11], which due
to the atomic structure is particularly suitable to be used with the Frank-Wolfe algorithm.
Let G be a finite collection of groups of indices g ✓ [n] (which are allowed to over-lap), and
S

g2G g = [n]. For each group g, we choose an arbitrary norm k.k
g

, which acts only on the

coordinates belonging to g, i.e. on R|g|. For any v 2 Rn and g ✓ [n], we write v

[g]

2 Rn

for the vector coinciding with v in the coordinates in group g, and being zero elsewhere, i.e.
supp(v

[g]

) ✓ g. The same vector when restricted to these coordinates is written as v

(g)

2 R|g|.
In this setting, a slight generalization of the latent group norm [OJV11] is given by

kxkG := min
v(g)2R|g|

P

g2G
�

�

v

(g)

�

�

g

s.t. x =
P

g2G v

[g]

.

It is known [OJV11] that this norm is an atomic norm (and a norm), with the atoms A =

9



Factorized Matrix Domains
D := conv

⇣n

uvT
�

�

�

u2Rn, kuk2=1
v2Rm, kvk2=1

o⌘

D := conv

⇣n

uvT
�

�

�

u2Aleft
v2Aright

o⌘

A
left ⇢ R n

A
right ⇢ R m

(trace norm)

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization

r Aleft✓ Rm⇥r Aright✓ Rn⇥r ⌦conv(A)(M) ⌦⇤
A(M) FW step

1 k.k2-sphere k.k2-sphere Trace norm kMk
tr

kMk
op

Lanczos, see Table 1

1 k.k1-sphere k.k1-sphere Vector `1-norm k ~Mk1 k ~Mk1 O(nm)
1 k.k1-sphere k.k1-sphere Cut-norm k.k1!1 NP-hard (Alon & Naor, 2006)

n+m k.k2,1 k.k2,1 Max-norm kMkmax SDP, see Table 1

1 k.k2 \ Rm

�0 k.k2 \ Rn

�0 “non-neg. trace norm” NP-hard (Murty & Kabadi, 1987)
1 Simplex �

m

Simplex �
n

“non-neg. matrix `1-norm” O(nm)

Table 2. Examples of some factorized matrix norms on Rm⇥n, each induced by two atomic norms (last two rows giving
non-negative factorizations). Here kMk2,1 is the length of the `2-longest row of the matrix M , and ~M denotes the entries
of M written in a single large vector.

of (Cai et al., 2010), which perform O(1/
p

") complete
SVD computations, in each iteration taking time cubic
in the matrix dimension.
For trace norm optimization, the presentation here
avoids the detour over a semidefinite programming for-
mulation present in (Jaggi & Sulovský, 2010) when
applying the method of (Hazan, 2008). The same
algorithm applies to optimizing under constrained
weighted trace norm, by reduction to the trace norm
as e.g. described in (Giesen et al., 2012). For op-
timizing over semidefinite matrices Sn⇥n of bounded
trace, the above discussion is analogous, with A :=
�

uuT

�

�

u 2 Rn, kuk
2

= 1
 

.

General Factorized Matrix Norm Domains.
Even in the case when optimizing over the individ-
ual atomic domains (given by A

left

and A
right

) is easy,
optimizing a linear function over such a product do-
main A can rapidly turn into an intractable combina-
torial problem, cf. Table 2. For example, maximiz-
ing

⌦

uv

T , M
↵

over vectors kuk1  1 and kvk1  1
for a given matrix M amounts to computing the cut-

norm kMk1!1

, which is NP-hard (Alon & Naor,
2006). Maximizing the same quadratic form over non-
negative vectors kuk

2

 1, u � 0 and kvk
2

 1, v � 0
was also proven NP-hard by (Murty & Kabadi, 1987).

Matrix Max-Norm, and Semidefinite Optimiza-
tion with Bounded Diagonal. Another e�ciently
tractable case of a factorized matrix domain is given
by the matrix max-norm, which is known to be an
approximation of the cut-norm (Srebro & Shraibman,
2005). Optimizing a linear function over the PSD ma-
trices with all diagonal elements upper bounded by one
is a well-studied problem, e.g. appearing as the stan-
dard SDP relaxation of the Max-Cut problem (Goe-
mans & Williamson, 1995). The algorithm of (Arora
et al., 2005) delivers an additive "0-approximation to
the linearized problem over such matrices in time

Õ
⇣

n

1.5
L

2.5

"

02.5 N
M

⌘

where L > 0 is an upper bound on

the value of the linear problem, and N
M

is the number
of non-zeros in M (Jaggi, 2011, Section 3.5).
Using the alternative characterization of the max-

norm of a rectangular matrix M 2 Rm⇥n in terms

of a semidefinite program of the above form (Srebro &
Shraibman, 2005; Jaggi, 2011), we can directly plug in
the algorithm of (Arora et al., 2005) into the Frank-
Wolfe method, in order to optimize any convex func-
tion over a max-norm constrained domain. This, to
our knowledge, gives the first algorithm with a con-
vergence guarantee for such problems. (Lee et al.,
2010) have studied a proximal optimizer on a non-
convex formulation of the max-norm, and very re-
cently, (Orabona et al., 2012) have introduced a first-
order smoothing technique for max-norm problems.

4.4. Optimizing over Submodular Polyhedra

For a finite ground set S, a real valued function
defined on all subsets of S, is called submodular,
if g(A \ B) + g(A [ B)  g(A) + g(B) holds
8A, B ✓ S. For any given submodular function g with
g(;) = 0, the corresponding submodular polyhedron

(or polymatroid) is defined as the convex set P
g

:=
�

x 2 Rn

�

�

P

i2A

x
i

 g(A) 8A ✓ S
 

, where n = |S|.

Our presented Frank-Wolfe algorithm variants directly
apply to minimization of a convex function f over
such a domain. This follows since linear optimiza-
tion over such a submodular polyhedron domain is
e�cient, by an O(n log n) time greedy algorithm (Ed-
monds, 1970; Lovász, 1983; Bach, 2011). (Note that
for compactness, the domain is usually restricted to
the non-negative orthant D := P

g

\ Rn

�0

). Submodu-
lar optimization is currently gaining increased interest
as a more general way to relate combinatorial prob-
lems to convexity, such as for example for structured
sparsity, see e.g. (Bach, 2011).
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