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Optimization

General Optimization Problem

minimize f(x)

with x 2 RD

for convenience: f : RD ! R is continuous and di↵erentiable
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Why? And How?

optimization is everywhere

machine learning, big data, statistics, data analysis of all kinds, finance,

logistics, planning, control theory, mathematics, search engines,

simulations, and many other applications ...

I Mathematical Modeling
(defining the optimization

problem)

I Solving It
(running an optimization

algorithm)
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Optimization Algorithms

the main contenders:

I Coordinate Descent

I Gradient Descent

I Stochastic Gradient Descent

History: Early roots: Cauchy 1847. Linear Programming in the 1950’s. General Optimization in 1980’s, together

with new Convex Optimization theory. Now active research field again in the wake of big data.
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Coordinate Descent

Goal: Find x

? 2 RD minimizing f(x). (Example: D = 2)

x?

x
1

x
2

Idea: Update one coordinate at a time, while keeping others fixed.
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Coordinate Descent

Idea: Update one coordinate at a time, while keeping others fixed.

Coordinate Descent

initialize x

(0) 2 RD

for t = 0:maxIter do
sample a coordinate d uniformly at random from 1 . . . D.
optimize f w.r.t. that coordinate:

u?  argmin
u2R

f
�
x
(t)
1 , . . . , x

(t)
d�1, u, x

(t)
d+1, . . . , x

(t)
D

�

update x
(t+1)
d

 u?

x
(t+1)
d

0  x
(t)
d

0 for d0 6= d
end for
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Navigating the Optimization Landscape

The Direction of Steepest Change:

x?

x

rf(x)

Gradient of a function f : RD ! R is

rf(x) :=
⇣
@f(x)
@x

1

, . . . , @f(x)
@xD

⌘T
2 RD

Institute for Machine Learning, ETHZ CIL: Optimization Algorithms/Coordinate Descent 10/45



Gradient Descent Method

x?

x

rf(x)

�rf(x)

initialize x

(0) 2 RD

for t = 0:maxIter do
update x

(t+1)  x

(t) � �rf(x(t))
end for
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Gradient Descent Method
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Gradient Descent Method

initialize x

(0) 2 RD

for t = 0:maxIter do
update x

(t+1)  x

(t) � �rf(x(t))
end for

Cauchy 1847

I simple to implement

I good scalability and robustness

I stepsize � usually decreasing with � ⇡ 1
t
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Stochastic Gradient Descent

Optimization Problem Structure

minimize f(x) =
1

N

NX

n=1

f
n

(x)

with x 2 RD

Stochastic Gradient Descent (SGD)

initialize x

(0) 2 RD

for t = 0:maxIter do
sample n uniformly at random from 1 . . . N .
update x

(t+1)  x

(t) � �rf
n

(x(t))
end for
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Stochastic Gradient Descent - Why Does It Work?

SGD update x

(t+1)  x

(t) � �rf
n

(x(t))

I Idea: Cheap but unbiased estimate of the gradient
I E[rfn(x)] = rf(x) over the random choice of n.

I Computing rf
n

(x) is much cheaper than computing rf(x).
I Typically N times cheaper

I Again use a decreasing stepsize � ⇡ 1
t
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Constrained Optimization

Constrained Optimization Problem

minimize f(x)

subject to x 2 Q

f

f(x)

x

Q ✓ RD

Q ✓ RD
x
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Constrained Optimization

Constrained Optimization Problem

minimize f(x)

subject to x 2 Q

f

f(x)

x

Q ✓ RD

Solving Constrained
Optimization Problems

A Projected Gradient Descent

B Transform it into an
unconstrained problem

Q ✓ RD
x
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Projected Gradient Descent

Idea: add a projection onto Q after every step

P
Q

(x0) := argmin
y2Q ky � x

0k

Q ✓ RD
x

�rf(x)

PQ(x0)

x0

Projected gradient update x

(t+1)  P
Q

⇥
x

(t) � �rf(x(t))
⇤
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Turning Constrained into Unconstrained Problems

Use penalty functions instead of directly solving min
x2Q f(x) .

I “brick wall ” (indicator function) I
Q

(x) :=

(
0 x 2 Q

1 x /2 Q

) min
x2RD

f(x) + I
Q

(x)

(disadvantage: non-continuous objective)

I Penalize error
Example: Q = {x 2 RD | Ax = b}

) min
x2RD

f(x) + � kAx� bk2

I Linearized Penalty Functions (Lagrange Multipliers)
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Optimization Theory

Duality

Convex Optimization
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Duality for Constrained Optimization

Constrained Problem Formulation (Standard Form)

minimize f(x)

subject to g
i

(x)  0, i = 1, . . . , m

h
i

(x) = 0, i = 1, . . . , p

I f(x): objective function

I g
i

(x): inequality constraint functions

I h
i

(x): a�ne equality constraint functions, h
i

(x) = a

T

i

x� b
i
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Lagrange Multipliers

Primal Optimization Problem

minimize f(x)

subject to g
i

(x)  0, i = 1, . . . , m

h
i

(x) = 0, i = 1, . . . , p

Unconstrained Problem

minimize f(x) +
mX

i=1

I (g
i

(x)) +
pX

i=1

I0(hi

(x))

I I (u) :=

(
0 u  0

1 u > 0
I I0(u) :=

(
0 u = 0

1 u 6= 0
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Lagrange Multipliers

Unconstrained Problem

minimize f(x) +
mX

i=1

I (g
i

(x)) +
pX

i=1

I0(hi

(x))

I0 and I penalize perturbations with violating constraints by
“brick wall ” penalty functions.

We can approximate I (u) linearly with �
i

u, �
i

� 0,
and I0(u) with ⌫

i

u:

Lagrangian

L(x, �, ⌫) := f(x) +
mX

i=1

�
i

g
i

(x) +
pX

i=1

⌫
i

h
i

(x)
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Lagrange Multipliers

Linear approximation: I (u) ⇡ �
i

u, �
i

� 0, and I0(u) ⇡ ⌫
i

u.
�
i

, ⌫
i

are called Lagrange multipliers.

Lagrangian

L(x, �, ⌫) := f(x) +
mX

i=1

�
i

g
i

(x) +
pX

i=1

⌫
i

h
i

(x)

Lagrange dual function

d(�, ⌫) := inf
x

L(x, �, ⌫) 2 R

Since �
i

u  I (u) and ⌫
i

u  I0(u) for all u:

I The value of the dual function is always a lower bound on the
primal value f(x) of any feasible x.
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Visual Example (Lower bound from a dual feasible point)

*Figure 5.1 from S. Boyd, L. Vandenberghe

The solid curve shows

the objective function f ,

and the dashed curve

shows the constraint

function g1. The

feasible set is the interval

[�0.46, 0, 46], which

is indicated by the two

dotted vertical lines.

The optimal point

and value are x

?
=

�0.46, f(x

?
) = 1.54

(shown as the black

dot). The dotted curves

show L(x, �) for

� = 0.1, 0.2, . . . , 1.0.

Each of these has

minimum value smaller

than f(x

?
), since on

the feasible set (and

for � � 0) we have

L(x, �)  f(x).
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Visual Example (The dual function d(�) is concave)

5.1 The Lagrange dual function 217

x
�1 �0.5 0 0.5 1

�2

�1

0

1

2

3

4

5

Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the
objective function f

0

, and the dashed curve shows the constraint function f
1

.
The feasible set is the interval [�0.46, 0.46], which is indicated by the two
dotted vertical lines. The optimal point and value are x? = �0.46, p? = 1.54
(shown as a circle). The dotted curves show L(x, �) for � = 0.1, 0.2, . . . , 1.0.
Each of these has a minimum value smaller than p?, since on the feasible set
(and for � � 0) we have L(x, �)  f

0

(x).

�

g
(�

)

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

Figure 5.2 The dual function g for the problem in figure 5.1. Neither f
0

nor
f
1

is convex, but the dual function is concave. The horizontal dashed line
shows p?, the optimal value of the problem.

*Figure 5.2 from S. Boyd, L. Vandenberghe

The dual function

d(�) for the problem.

Neither f nor g1 is

convex, but the dual

function is concave.

The horizontal dashed

line shows f(x

?
), the

optimal value of the

problem.
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Dual Problem

Lagrangian

L(x, �, ⌫) := f(x) +
mX

i=1

�
i

g
i

(x) +
pX

i=1

⌫
i

h
i

(x)

Lagrange dual function

d(�, ⌫) := inf
x

L(x, �, ⌫)

Now find the best lower bound on the optimum f(x?):

Lagrange dual problem

maximize d(�, ⌫)

subject to � � 0
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Dual Problem

Lagrange dual problem

maximize d(�, ⌫)

subject to � � 0

I It is always a lower bound on the primal value f(x) of any
feasible x.
) It is a lower bound on the (unknown) solution value f(x?)
of the primal problem!

Strong Duality

I If the primal optimization problem is convex (to be defined

below), and under some additional conditions, the solution
value of the dual problem is equal to the solution value f(x?)
of the primal problem.
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So Everything is Fine and Well Optimized?

no!
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Algorithms Can Get Stuck in Local Optima!

Example: Gradient Descent (and also the other algorithms we have seen)

*from mathworks.com
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Convex Optimization

comes to help

or: if you can’t solve it, re-define the problem

(⇡ 25 000 citations)
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Convex Set

A set Q is convex if the line segment between any two points of Q
lies in Q, i.e., if for any x,y 2 Q and any ✓ with 0  ✓  1, we
have

✓x + (1� ✓)y 2 Q.
24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every a�ne set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R

2.
We call a point of the form ✓

1

x
1

+ · · · + ✓kxk, where ✓
1

+ · · · + ✓k = 1 and
✓i � 0, i = 1, . . . , k, a convex combination of the points x

1

, . . . , xk. As with a�ne
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with ✓i the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {✓
1

x
1

+ · · · + ✓kxk | xi 2 C, ✓i � 0, i = 1, . . . , k, ✓
1

+ · · · + ✓k = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ✓
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose ✓

1

, ✓
2

, . . .

*Figure 2.2 from S. Boyd, L. Vandenberghe

Left Convex.

Middle Not convex, since line segment not in set.

Right Not convex, since some, but not all boundary points
are contained in the set.
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Properties of Convex Sets

I Intersections of convex sets are convex

I Projections onto convex sets are unique.
(and often e�cient to compute)

recall PQ(x0) := argminy2Q ky � x

0k
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Convex Function

Definition

A function f : RD ! R is convex if dom f is a convex set and if
for all x,y 2 dom f , and ✓ with 0  ✓  1, we have

f(✓x + (1� ✓)y)  ✓f(x) + (1� ✓)f(y).

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : R

n ! R is convex if dom f is a convex set and if for all x,
y 2 dom f , and ✓ with 0  ✓  1, we have

f(✓x + (1 � ✓)y)  ✓f(x) + (1 � ✓)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x 6= y
and 0 < ✓ < 1. We say f is concave if �f is convex, and strictly concave if �f is
strictly convex.

For an a�ne function we always have equality in (3.1), so all a�ne (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is a�ne.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x 2 dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.

*Figure 3.1 from S. Boyd, L. Vandenberghe

Geometrically: The line segment between (x, f(x)) and (y, f(y))
lies above the graph of f .
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Convex Function
Epigraph: The graph of a function f : RD ! R is defined as

{(x, f(x)) |x 2 dom f},

The epigraph of a function f : RD ! R is defined as

{(x, t) |x 2 dom f, f(x)  t},

A function is convex i↵ its epigraph is a convex set.
76 3 Convex functions

epi f

f

Figure 3.5 Epigraph of a function f , shown shaded. The lower boundary,
shown darker, is the graph of f .

Example 3.4 Matrix fractional function. The function f : Rn ⇥ Sn ! R, defined as

f(x, Y ) = xT Y �1x

is convex on dom f = Rn ⇥Sn
++

. (This generalizes the quadratic-over-linear function
f(x, y) = x2/y, with dom f = R ⇥ R

++

.)

One easy way to establish convexity of f is via its epigraph:

epi f = {(x, Y, t) | Y � 0, xT Y �1x  t}

=

⇢
(x, Y, t)

����


Y x
xT t

�
⌫ 0, Y � 0

�
,

using the Schur complement condition for positive semidefiniteness of a block matrix
(see §A.5.5). The last condition is a linear matrix inequality in (x, Y, t), and therefore
epi f is convex.

For the special case n = 1, the matrix fractional function reduces to the quadratic-
over-linear function x2/y, and the associated LMI representation is


y x
x t

�
⌫ 0, y > 0

(the graph of which is shown in figure 3.3).

Many results for convex functions can be proved (or interpreted) geometrically
using epigraphs, and applying results for convex sets. As an example, consider the
first-order condition for convexity:

f(y) � f(x) + rf(x)T (y � x),

where f is convex and x, y 2 dom f . We can interpret this basic inequality
geometrically in terms of epi f . If (y, t) 2 epi f , then

t � f(y) � f(x) + rf(x)T (y � x).

Convex?
*Figure 3.5 from S. Boyd, L. Vandenberghe
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Convex Function

Examples of convex functions

I Linear functions: f(x) = a

T

x

I A�ne functions: f(x) = a

T

x + b

I Exponential: f(x) = e↵x

I Norms. Every norm on RD is convex.

Convexity of a norm f(x)

By the triangle inequality f(x + y)  f(x) + f(y) and
homogeneity of a norm f(ax) = |a|f(x) , a scalar:

f(✓x + (1� ✓)y)  f(✓x) + f((1� ✓)y) = ✓f(x) + (1� ✓)f(y).

We used the triangle inequality for the inequality and homogeneity
for the equality.
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Convex Optimization

Convex Optimization Problems are of the form

min f(x) s.t. x 2 Q

where both

I f is a convex function

I Q is a convex set (note: RD is convex)

Properties of Convex Optimization Problems

I Every local minimum is a global minimum
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Solving Convex Optimization Problems (provably)

For convex optimization problems, all algorithms

I Coordinate Descent

I Gradient Descent

I Stochastic Gradient Descent

I Projected Gradient Descent (projections onto convex sets do work!)

do converge to the global optimum! (assuming f di↵erentiable)

Theorem: For convex problems, the convergence rate of the
above four algorithms is proportional with 1

t

, i.e.

f(x(t))� f(x?)  c

t

(where x

? is some optimal solution to the problem.)
caveat: SGD rate can be 1/

p
t if f is not strongly convex
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SubGradient Descent
What if f is not di↵erentiable?

Subgradient: g 2 RD is a subgradient of f at x if

f(y) � f(x) + g

T(y � x) for all y

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) � f(x) + gT (y � x) for all y

(() (g,�1) supports epi f at (x, f(x)))

PSfrag replacements

x
1

x
2

f(x
1

) + gT
1

(x � x
1

)

f(x
2

) + gT
2

(x � x
2

)

f(x
2

) + gT
3

(x � x
2

)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE392o, Stanford University 2

Subgradient Descent: In algorithms, replace the gradient with a
subgradient.

Theorem: For convex problems, the convergence rate of [plain
or projected] subgradient descent is proportional with 1p

t

, i.e.

f(x(t))� f(x?)  cp
t
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Optimization for Matrix Factorizations

General Formulation

min
U,Z

f(U,Z)

s.t. U 2 Q1 ✓ RD⇥K

Z 2 Q2 ✓ RN⇥K

and assume f(U,Z) = h(UZ

T ) for some function h : RD⇥N ! R

Examples

I f(U,Z) = 1
2kX�UZ

T k2
F

,
with Q1 = RD⇥K , Q2 = RN⇥K .

Has an explicit solution: Singular Value Decomposition
(first K singular vector pairs)

Unfortunately, this case is a rare exception!
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Optimization for Matrix Factorizations: Examples

I K-means
f(U, Z̃) = kX�UZ̃

T k2
F

=
P

N

n=1

P
K

k=1 Z̃
nk

kx
n

� u

k

k22
with Q1 = RD⇥K ,

Q2 = {Z̃ 2 RN⇥K

�0

|
P

k

Z̃
nk

= 1, z̃

T
:kz̃:h = 0 for k 6= h}.

I Non-Negative Matrix Factorizations
f(U,Z) = ...
with Q1 = RD⇥K

�0

,

Q2 = RN⇥K

�0

.

I Collaborative Filtering / Matrix Completion

f(U,Z) = 1
|⌦|

P
(d,n)2⌦

1
2

⇥
X

dn

� (UZ

T )
dn

⇤2

with Q1 = RD⇥K ,
Q2 = RN⇥K . where ⌦ is the set of observed ratings
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Matrix Factorizations are Typically Non-Convex

Even if we are given a convex objective function

h(W) : RD⇥N ! R,

the same objective function in its factorized form

f(U,Z) := h(UZ

T ) : R(D+N)⇥K ! R

is typically not convex (in its complete argument (U,Z)).

Proof:

Identity function h(w) := w, and D = N = 1. The resulting
objective f(u, z) = uz is a saddle function over its two variables.
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Alternating Minimization

min
U2Q

1

,Z2Q
2

f(U,Z)

Idea:

... remember coordinate descent ...

for t = 0:maxIter do
update

U

(t+1)  argmin
U2Q

1

f(U,Z(t))

Z

(t+1)  argmin
Z2Q

2

f(U(t+1),Z)

end for

Hardt, M. (2013). Understanding Alternating Minimization for Matrix Completion.
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Alternating Minimization

I Often, while the original optimization problem might be
non-convex, the two subproblems in the algorithm (w.r.t. U

and Z separately) can be convex.

I Many Algorithm Variants:

I In each step, optimize only over smaller parts of U and Z

respectively.

I [Stochastic] Gradient steps on the parts, instead of perfect
optimization
(Winner of the Netflix Prize Competition)

related story: Simon Funk, 2006, Blog Post “Netflix Update: Try This at Home”
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http://www.kdd.org/sites/default/files/issues/9-1-2007-06/simon-funk-explorations.pdf


Reading Material

If you want to learn more about optimization:

S. Boyd, L. Vandenberghe: Convex Optimization.
Cambridge Univ. Press, (2004).
Mostly chapters 4 and 5. It’s free:
http://www.stanford.edu/

~

boyd/cvxbook/.
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http://www.stanford.edu/~boyd/cvxbook/
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