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Optimization

General Optimization Problem

minimize f(x)

with x € RP

for convenience: f : RP — R is continuous and differentiable
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Why? And How?

optimization is everywhere

machine learning, big data, statistics, data analysis of all kinds, finance,
logistics, planning, control theory, mathematics, search engines,
simulations, and many other applications ...

» Mathematical Modeling » Solving It
(defining the optimization (running an optimization
problem) algorithm)
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Optimization Algorithms

the main contenders:

» Coordinate Descent
» Gradient Descent

» Stochastic Gradient Descent

History: Early roots: Cauchy 1847. Linear Programming in the 1950's. General Optimization in 1980’s, together

with new Convex Optimization theory. Now active research field again in the wake of big data.
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Coordinate Descent

Goal: Find x* € R” minimizing f(x). (Example: D = 2)

Idea: Update one coordinate at a time, while keeping others fixed.
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Coordinate Descent

Idea: Update one coordinate at a time, while keeping others fixed.

Coordinate Descent
initialize x(¥) € RP
for t = 0:maxlter do
sample a coordinate d uniformly at random from 1...D.
optimize f w.r.t. that coordinate:

u* < argmin f(:vgt),...,x&tll,zL,xéal,...,xg))
u€eR
update xétﬂ) — u*

20 2 gor £ d
end for
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Navigating the Optimization Landscape

The Direction of Steepest Change:
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Gradient Descent Method

initialize x(©) € RP
for t = 0:maxlter do

update x(+1) « x(®) — 4V f(x®)
end for
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Gradient Descent Method

initialize x(0) € RP
for t = 0:maxlter do

update x(tH+1D  x( — 4V f(x®)
end for

Cauchy 1847

> simple to implement
» good scalability and robustness

> stepsize v usually decreasing with v ~ 1
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Stochastic Gradient Descent

Optimization Problem Structure

minimize f(x) = %Z fn(x)

with ~ x € RP
Stochastic Gradient Descent (SGD)

initialize x(¥) € RP

for t = 0:maxlter do
sample n uniformly at random from 1... N.
update x(H1) « x(® 4V f, (x®)

end for
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Stochastic Gradient Descent - Why Does It Work?

SGD update x(*1D « x() — 4V £, (x®)

» ldea: Cheap but unbiased estimate of the gradient
» E[Vf.(x)] = Vf(x) over the random choice of n.

» Computing V f,,(x) is much cheaper than computing V f(x).
» Typically N times cheaper

» Again use a decreasing stepsize v =~ %
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Constrained Optimization

f

Constrained Optimization Problem

minimize f(x)
subject to xeq
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Constrained Optimization

f

Constrained Optimization Problem

minimize f(x)

subject to X EeEQ

Solving Constrained
Optimization Problems

A Projected Gradient Descent

B Transform it into an
unconstrained problem
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Projected Gradient Descent

Idea: add a projection onto () after every step

Po(x') := argming¢q [y — X/||

Projected gradient update x(*1) <« Pgo[x(t) — 4V f(x®)]
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Turning Constrained into Unconstrained Problems

Use penalty functions instead of directly solving minyecg f(x) .

0
» “brick wall" (indicator function)  Ig(x) := xeq

o x¢Q

= min 1
min () + Io(x)
(disadvantage: non-continuous objective)
» Penalize error
Example: Q = {x € RP | Ax = b}

= mi M| Ax — b
Jmin - f(x) + AflAx — bj|

» Linearized Penalty Functions (Lagrange Multipliers)
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Optimization Theory

Duality

Convex Optimization
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Duality for Constrained Optimization

Constrained Problem Formulation (Standard Form)

minimize f(x)

subject to gi(x) <

» f(x): objective function
> gl(x): inequality constraint functions

h;i(x): affine equality constraint functions, h;(x) = al
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Lagrange Multipliers

Primal Optimization Problem

minimize f(x)
subject to 9i(x)<0,i=1,...,
hi(x)=0,i=1,...,p
Unconstrained Problem
m p
minimize f(x) + Y T(g:i(x)) + Y _ To(hi(x))
i=1 =1
0 <0 0 =
> L(w) s > )= "
oo u>0 oo u#0
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Lagrange Multipliers

Unconstrained Problem
m p
minimize f(x) + Z I (gi(x)) + Z Ip(hi(x))
i=1 i=1

Iy and I_ penalize perturbations with violating constraints by
“brick wall” penalty functions.

We can approximate I_(u) linearly with A\ju, A; > 0,
and Ip(u) with v;u:

Lagrangian

p
L(x,\, V) )+ Z Xigi(x) + Y vihi(x)
i=1
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Lagrange Multipliers

Linear approximation: I_(u) =~ \ju, A; > 0, and Ip(u) ~ v;u.
i, v; are called Lagrange multipliers.

Lagrangian
P
L(x,A\v) = f(x —i—zj)\zgz —|—Zyihl-(x)
i=1
Lagrange dual function
d\,v):=inf L(x,\,v) €R

Since \ju < I (u) and vu < Iy(u) for all w:

» The value of the dual function is always a lower bound on the
primal value f(x) of any feasible x.
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Visual Example (Lower bound from a dual feasible point)

—1

feasible set

(x*p*)

_2_1

~05

8O+

*Figure 5.1 from S. Boyd, L. Vandenberghe
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The solid curve shows
the objective function f,
and the dashed curve
shows the constraint
function g;. The
feasible set is the interval
[—0.46,0,46], which
is indicated by the two
dotted  vertical lines.
The optimal point
and value are x* =
—0.46, f(x*) = 1.54
(shown as the black
dot). The dotted curves
show L(x,X) for
A =0.1,0.2,...,1.0.
Each  of these has
minimum value smaller
than f(x*), since on
the feasible set (and
for A > 0) we have
L(x,A) < £(x).



Visual Example (The dual function d(\) is concave)

1.6

1.57 1

The dual  function
1.4¢ ) d(X) for the problem.
Neither f nor gj is
5/ 1 3 convex, but the dual
: function is concave.
The horizontal dashed
1.2¢ R line shows f(x*), the
optimal value of the

problem.

1.1r 1

) 02 04 L 06 08 1

*Figure 5.2 from S. Boyd, L. Vandenberghe
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Dual Problem

Lagrangian
P
(X >‘ V + Z)\zgz Z zh’i(x)
i=1

Lagrange dual function

d(A\,v) :=inf L(x, A\, )

Now find the best lower bound on the optimum f(x*):
Lagrange dual problem

maximize A\, v)
subject to A>0
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Dual Problem

Lagrange dual problem

maximize d(X\,v)
subject to A>0

» It is always a lower bound on the primal value f(x) of any

feasible x.
= It is a lower bound on the (unknown) solution value f(x*)

of the primal problem!

Strong Duality

» If the primal optimization problem is convex (to be defined
below), and under some additional conditions, the solution
value of the dual problem is equal to the solution value f(x*)
of the primal problem.
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So Everything is Fine and Well Optimized?
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Algorithms Can Get Stuck in Local Optima!

EXampIe: Gradient Descent (and also the other algorithms we have seen)

oW = e e e e
DSES VAL AT
Optimization

.,
“\\
Ll .

.

*from mathworks.com
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Convex Optimization

comes to help

or: if you can't solve it, re-define the problem

convex
Optimization

(& 25000 citations)
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Convex Set

A set @) is convex if the line segment between any two points of ()
lies in Q, i.e., if for any x,y € @ and any 6 with 0 <6 <1, we

N
L

*Figure 2.2 from S. Boyd, L. Vandenberghe

x4+ (1 —-0)y € Q.

Left Convex.
Middle Not convex, since line segment not in set.

Right Not convex, since some, but not all boundary points
are contained in the set.
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Properties of Convex Sets

» Intersections of convex sets are convex

» Projections onto convex sets are unique.
(and often efficient to compute)

recall Po(x') := argmingcq [ly — X'l
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Convex Function

Definition

A function f : RP — R is convex if dom f is a convex set and if
for all x,y € dom f, and 6 with 0 < 0 < 1, we have

fOx+(1—0)y) <0f(x)+(1—06)f(y).

(v, f(y))
(z, f(x))

*Figure 3.1 from S. Boyd, L. Vandenberghe

Geometrically: The line segment between (x, f(x)) and (y, f(y))
lies above the graph of f.
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Convex Function
Epigraph: The graph of a function f : RP — R is defined as

{(x, f(x)) [x € dom f},

The epigraph of a function f : R? — R is defined as

{(x,#) | x € dom £, f(x) < 1},

A function is convex iff its epigraph is a convex set.

epi f

Convex?
*Figure 3.5 from S. Boyd, L. Vandenberghe
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Convex Function

Examples of convex functions

» Linear functions: f(x) =
» Affine functions: f(x)
» Exponential: f(x) = e

» Norms. Every norm on R” is convex.

Convexity of a norm f(x)

By the triangle inequality f(x+y) < f(x) + f(y) and
homogeneity of a norm f(ax) = |a|f(x), a scalar:

fOx+(1=0)y) < f(0x) + f(1 = 0)y) = 0f(x) + (1= 0)f(y).

We used the triangle inequality for the inequality and homogeneity
for the equality.
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Convex Optimization

Convex Optimization Problems are of the form
min f(x) s.t. xe@

where both
» f is a convex function

» (Q is a convex set (note: R is convex)

Properties of Convex Optimization Problems

> Every local minimum is a global minimum
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Solving Convex Optimization Problems (provably)

For convex optimization problems, all algorithms

v

Coordinate Descent

v

Gradient Descent

v

Stochastic Gradient Descent

v

PI’OJeCted Grad|ent Descent (projections onto convex sets do work!)

do converge to the global optimum! (assuming £ differentiable)

Theorem: For convex problems, the convergence rate of the
above four algorithms is proportional with % i.e.

F) = f(x) <

Sl Ne!

(where x* is some optimal solution to the problem.)

caveat: SGD rate can be 1/+/ if f is not strongly convex
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SubGradient Descent
What if f is not differentiable?

Subgradient: g € R” is a subgradient of f at x if

fy) = fx)+g'(y—x) forally
f(x)

f(@1) +gf (x — 931).\

@) + g5 (2 — a2)
P CORN A CEED)

Subgradient Descent: In algorithms, replace the gradient with a
subgradient.

Theorem: For convex problems, the convergence rate of [plain
or projected| subgradient descent is proportional with % i.e.

NONT
Je) = 1) <
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Optimization for Matrix Factorizations

General Formulation
m}n ( y )

st. Ue@ CRP*E
7 c QZ C RNXK
and assume f(U,Z) = h(UZ") for some function h : RP*N R
Examples

» f(U,Z) = 3|X - UZT|%,

with Q; = RPXK (Qy = RVXK,

Has an explicit solution: Singular Value Decomposition
(first K singular vector pairs)

Unfortunately, this case is a rare exception!
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Optimization for Matrix Factorizations: Examples

> K—meNans B B
F(U,Z) = |X = UZT |} = 00, 300 Zokllxn — i3
with Q) = RP*K, )
Q2 ={Z e RY§™ | X4 Znk =1, 2y2:p = 0 for k # h}.

» Non-Negative Matrix Factorizations

f(U, Z) = o
with Q1 = Rg™,
Q2 = REGH.

» Collaborative Filtering / Matrix Completion
2
f(U,Z) = ﬁ Z(d,n)eﬂ %[an - (UZT)dn}
with Q = RP*K,

Q _ RNXK . .
2= : where € is the set of observed ratings
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Matrix Factorizations are Typically Non-Convex

Even if we are given a convex objective function
h(W) : RPN LR,
the same objective function in its factorized form
f(U,Z) = h(UZT) . REPHNE LR

is typically not convex (in its complete argument (U, Z)).

Proof:
Identity function h(w) := w, and D = N = 1. The resulting
objective f(u,z) = uz is a saddle function over its two variables.
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Alternating Minimization

i U,Z
vediBeg, (U2
Idea:
. remember coordinate descent ...
for t = O:maxlter do
update
UMD  argmin f(U,Z®)
Ue:
7))« argmin f(U(t'H),Z)
ZeQ2
end for

Hardt, M. (2013). Understanding Alternating Minimization for Matrix Completion.
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http://arxiv.org/abs/1312.0925

Alternating Minimization

» Often, while the original optimization problem might be
non-convex, the two subproblems in the algorithm (w.r.t. U
and Z separately) can be convex.

» Many Algorithm Variants:

> In each step, optimize only over smaller parts of U and Z
respectively.

» [Stochastic] Gradient steps on the parts, instead of perfect

optimization
(Winner of the Netflix Prize Competition)

related story: Simon Funk, 2006, Blog Post “Netflix Update: Try This at Home”
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Reading Material

If you want to learn more about optimization:

S. Boyd, L. Vandenberghe: Convex Optimization.
Cambridge Univ. Press, (2004).

Mostly chapters 4 and 5. It's free:
http://www.stanford.edu/~boyd/cvxbook/.

~ Convex
Optimization
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