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Abstract

Following the recent work of Develin and Sturmfels and others (see, e.g., [10, 16, 2, 11]), we
investigate discrete geometric questions over the tropical semiring (R, min, +). Specifically, we obtain
the following tropical analogues of classical theorems in convex geometry: a separation theorem for a
pair of disjoint tropical polytopes by tropical halfspaces and tropical versions of Radon’s lemma, Helly’s
theorem, the Centerpoint theorem, and Tverberg’s theorem, including algorithms to find tropical
centerpoints and Tverberg points. We also prove tropical analogues of the colored Carathéodory and
colored Tverberg theorems. Furthermore, we study the tropical analogues of k-sets and levels in
halfspace arrangements and obtain tight bounds of Θ(nd−1) for the number of tropical halving sets in
any fixed dimension d.

1 Introduction

In tropical mathematics, the basic object of study is the tropical semiring1 (R,⊕,�), also referred to
as the min-plus algebra. This is the set of real numbers with the arithmetic operations of tropical
addition and tropical multiplication, defined by

a⊕ b := min{a, b} and a� b := a+ b,

respectively.
The d-dimensional space Rd with component-wise tropical vector addition and tropical tropical

scalar multiplication, defined by (a1, . . . , ad)⊕(b1, . . . , bd) := (a1⊕b1, . . . , ad⊕bd) and λ�(a1, . . . , ad) :=
(λ� a1, . . . , λ� an), respectively, is a semimodule over the semiring (R,⊕,�).

These structures occur naturally in many contexts. A well-known example is the all-pairs shortest path
problem in graphs, which can be viewed in terms of matrix multiplication over the tropical semiring.2 For
more background on linear algebra and matrix theory over the tropical and other idempotent semirings,
and further applications in graph theory, automata theory, scheduling, control theory, and other areas, see,
e.g., the surveys [23, 13, 6] and the monographs [3, 14]. For a quick elementary introduction to tropical
mathematics, see [25].

Tropical Discrete Geometry. The notion of convexity in general idempotent semimodules was first
investigated by Zimmermann [28]. Develin and Sturmfels [10] initiated the study of tropical convex
polytopes and tropical discrete geometry. We recall the basic definitions. A set C ⊂ Rd is called tropically
convex if for any two point a, b ∈ C, the tropical line segment {λ � a ⊕ µ � b|λ, µ ∈ R} spanned by
a and b is contained in C. We stress that the coefficients of a tropical convex combination λ � a ⊕ µ � b
are not required to be nonnegative. The tropical convex hull tconv(S) of a set S ⊆ Rd is defined as the
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†Research supported by the Swiss National Science Foundation (SNF Project 200021-116741)
1By definition, the operations in a semiring obey the same laws as the operations in a ring, including associativity and

distributivity, except that one no longer requires the existence of a neutral element for addition (a zero) or of additive inverses.
In the case of the tropical semiring, the underlying set R is sometimes augmented by the additively neutral element +∞, but
there are no additive inverses. Note that 0 is the multiplicatively neutral element, i.e., 0 ⊗ a = a for all a, and that −a is
the tropical multiplicative inverse of an element a. The tropical semiring has the additional important property that tropical
addition is idempotent, i.e., a⊕ a = a for all a.

2If A is the adjacency matrix of a edge-weighted digraph then the (u, v)-entry of the k-th matrix power Ak (with tropical
matrix multiplication) is the minimum weight of any path with k (possibly repeated) edges between vertices u and v. If all
edge-weights are positive, then no edge is revisited and so the matrix I ⊕ A ⊕ A2 ⊕ A3 ⊕ . . . ⊕ An−1 encodes all minimum
weight paths, where I is the matrix with 0’s on the diagonal and ∞ elsewhere.
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smallest tropically convex set containing S. It is easy to see [10, Proposition 4] that tconv(S) equals the
set of all finite tropical convex combinations of points in S,

tconv(S) = {
⊕
p∈X

λp � p | λp ∈ R, X ⊆ S,X finite}.

By definition, a tropical polytope is the tropical convex hull of a finite set of points.
A tropically convex set C in Rd+1 is closed under tropical multiplication by arbitrary scalars, i.e., along

with any point a ∈ C, the convex set C contains the set R�a = {λ� a | λ ∈ R} = a+ R 1, which is just
the classical line in direction 1 = (1, . . . , 1) passing through a. Therefore, one identifies tropically convex
sets in Rd+1 with their projections in the d-dimensional tropical projective space

TPd = {R�a | a ∈ Rd+1} = Rd+1/(R 1).

Tropical polytopes have applications, e.g., to phylogenetic analysis in biology, see [10, 9]. They are also
closely related to other well-studied objects in mathematics. For instance, a tropical convex polytope
P = tconv(V ) is a compact subset of TPd that has a natural decomposition as a finite union of ordinary
polytopes. This decomposition is called the tropical complex generated by V . Sturmfels and Develin
showed that the combinatorial types of tropical complexes determined by an r-point set in TPd are in
bijection with the regular polydhedral subdivisions of the product of two simplices ∆r−1 ×∆d.

We remark that while a many classical results have nice analogues in tropical geometry (see the
discussion below), in other cases, unexpected subtleties arise. For instance, there are three nonequivalent
natural ways to define the rank of a tropical matrix [8]. Also, the definition of a face of a tropical convex
polytopes is more subtle than in the classical case [16, 11].

Joswig [16] introduced tropical halfspaces and showed that tropical convex polytopes are precisely the
bounded intersections of finitely many closed tropical halfspaces. By definition, a tropical hyperplane
Ha ⊂ TPd defined by the tropical linear form a = (a0, . . . , ad) ∈ Rd+1 is the set of points (x0, . . . , xd) ∈ TPd

such that the minimum
⊕d

i=0 ai � xi = min{a0 + x0, . . . , ad + xd} is attained in at least two coordinates,
see Figure 1. The point −a is called the apex of Ha. At the apex of a hyperplane, the minimum is
simultaneously attained in every coordinate. Note that tropical hyperplanes only differ by translations.
The complement of a hyperplane H in TPd consists of d + 1 connected components, called the open
sectors of H. The topological closure of an open sector is called a closed sector. A closed tropical
halfspace is the union of some subset of between 1 and d− 1 closed sectors of a tropical hyperplane. The
union of the complementary collection of closed sectors is the complementary closed halfspace.

The definition of tropical hyperplanes fits into the larger context of tropical algebraic geometry,
which studies tropical varieties, i.e., subsets of Rd defined by (possibly higher order) tropical polynomials,
i.e., finite tropical sums of tropical monomials c� x�a1

1 � . . .� x�add . Each tropical monomial corresponds
to a classical linear function c+a1x1 + . . .+adxd, and a tropical polynomial is the piecewise linear concave
function obtained by taking the minimum of these linear functions. The corresponding tropical variety
is defined as the set of points where the minimum is attained at least twice, which corresponds to the
projection of the lower-dimensional faces of the lower envelope of the corresponding hyperplanes. For an
introduction to tropical algebraic geometry and its applications we refer to [22, 12, 19].

Our contributions and related work. We provide several new results in tropical discrete geometry, by
establishing the following tropical analogues of well-known classical results (see, e.g., [18] for the classical
versions and further background).

Theorem 1 (Tropical Polytope-Polytope Separation). If P and Q are two disjoint tropical poly-
topes in TPd then there is a tropical hyperplane such that P and Q are contained in the interiors of
complementary closed halfspaces.

This theorem generalizes earlier tropical Farkas Lemma type results concerning point-polytope sepa-
ration [10, 16]. See also [7] for further tropical Hahn-Banach-type results concerning the separation of a
point from a convex set.

Theorem 2 (Tropical Centerpoint Theorem). Let S be a set of n points in TPd. Then there exists
a tropical centerpoint for S, i.e., a point c ∈ TPd such that any closed tropical halfspace containing
c contains at least n

d+1 points of S. Given S, a tropical centerpoint can be computed in time O(n4)
independent of d.
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We briefly contrast this to the situation in classical geometry. Jadhav and Mukhopadhyay [15] gave a
linear-time algorithm algorithm for computing centerpoints in the plane, Naor and Sharir [21] proposed
an O(n2 polylog(n)) algorithm for 3 dimensions, and Chan [4] described a randomized O(n log n + nd−1)
algorithm for any fixed dimension d. Teng [26] showed that deciding whether a given point c is a (classical)
centerpoint (or an r-Tverberg point, see below) of a point set in Rd is coNP-complete if d is part of the
input. An algorithm for computing approximate centerpoints in variable dimension was proposed in [5].

Theorem 3 (Tropical Tverberg Theorem). Let r, d ≥ 1 and let S be a set of n ≥ (d + 1)(r − 1) + 1
points in TPd. Then there exists a tropical Tverberg partition into r parts, i.e., r pairwise disjoint
subsets S1, . . . , Sr ⊆ S such that

⋂r
i=1 conv(Pi) 6= ∅. Any point in this intersection is called a tropical

r-Tverberg point of S. Given S as above, a tropical r-Tverberg partition can be computed in time O(nd).

Again, in classical geometry there are no efficient algorithms solving this problem in variable dimension.
See also [1] for more background on the algorithmic aspects of centerpoints and Tverberg points. Both in
classical and tropical setting, every Tverberg point is a centerpoint. We actually show that for tropical
point sets in general position, the reverse implication also holds.

From the tropical version of Radon’s Lemma (which is just Tverberg’s Theorem for the case r = 2)
one also easily derives a tropical analogue of Helly’s Theorem: a family of n ≥ d+ 1 tropically convex
sets in TPd has a nonempty intersection iff any (d+ 1) of the sets have a nonempty intersection.

Theorem 4 (Tropical Colorful Carathéodory Theorem). Consider d+1 finite point sets M1, . . . ,Md+1

in TPd such that 0 ∈ tconv(Mi) for every i. Then there exists “colorful” a (d + 1)-point set S ⊆
M1 ∪ . . . ∪Md+1 with |Mi ∩ S| = 1 for each i such that 0 ∈ tconv(S).

This extends the basic (“colorless”) tropical version of Carathéodory’s theorem proved in [10]. We also
give an elementary proof of the following result; we consider this of particular interest, since the proof of
the classical version uses methods from equivariant topology [29, 17].

Theorem 5 (Tropical Colored Tverberg Theorem). For any k, d ≥ 2, any point set P of n ≥ k(d+1)
points in general position in TPd that comes partitioned into d+ 1 color classes A0, . . . , Ad with k points
each, there exist k pairwise disjoint sets P1, . . . , Pk ⊆ P such that each Pi contains exactly one point of
each color Aj, j = 0, . . . , d (i.e. the Pi are “rainbow”), and

⋂k
i=1 tconv(Pi) 6= ∅.

Tropical Halfspace Arrangements and k-Sets. In Section 4, we count the number of regions in a
tropical hyperplane arrangement, a problem very related to tropical polytopes [10]. We will later use this
to bound the number of tropical k-sets. A k-set of an n-point set P is a subset of k points that can be
separated from the other points by a halfspace. For classical k-sets, there remains a big gap between the
proven lower and upper bound for the number of k-sets [18, Chapter 11] or [27]. For tropical k-sets, we
prove a tight bound of Θ(nd−1) for the number of k sets of an n-point sets in fixed dimension d (assuming
k ∈ Θ(n) and n− k ∈ Θ(n)).

2 Basics of Tropical Geometry

Recall that a point in TPd corresponds to a classical line in direction 1 = (1, . . . , 1) in Rd+1. There are
two standard types of coordinates used to represent a such point. The first is in canonical coordinates,
for which we take the unique point on the line such that all coordinates are nonnegative and at least one
coordinate is zero. The second is in normalized coordinates, where we choose the unique point on the
line whose first coordinate is zero.

�
�

�
�
�

�
�

S1

S3

S2
6

-
x2

x1

Figure 1: A tropical hyperplane
in TP2 (in normalized coordi-
nates, x0 = 0).

For a point x = (x0, . . . , xd) ∈ TPd in canonical coordinates, let
‖x‖ = maxdi=0 xi. For a point x = (x0, . . . , xd) ∈ TPd in arbitrary
coordinates, this means that ‖x‖ = max{xi−xj |i 6= j}. It is easy to see
that d(x, y) := ‖x− y‖ defines a metric on TPd, see [16, Lemma 2.1].

General position. The projection from Rd+1 onto any coordinate
hyperplane is a homomorphism of tropical semimodules [10, Theorem
2] and therefore induces a map TPd → TPd−1. Any map obtained by
an iteration of this process is called projection onto a tropical co-
ordinate subspace. A point set S ⊆ TPd is said to be in tropically
general position (see [10, Proposition 24]) if no k+1 of the points have
a projection onto a k-dimensional coordinate subspace TPk in which all
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projected points lie in a common hyperplane, 1 ≤ k ≤ d. A tropical hyperplane arrangement is in general
position if the apices of the hyperplanes are in tropical general position.

Sectors and duality for tropical hyperplanes. Recall that Ha denotes the tropical hyperplane with
apex at the point −a, see Figure 1. For the hyperplane H0 with apex at the origin, its open sectors
are the sets S0, . . . , Sd, where Si = {(x0, . . . , xd) | xi < xj for all j 6= i}. Similarly, the closed sectors are
denoted by S̄0, . . . , S̄d. For a general hyperplane Ha, its i-th open sector is −a + Si. Note that a point
lies on a tropical hyperplane if it lies in at least two closed sectors. A point p ∈ TPd and the hyperplane
Hp are called duals of each other. This duality preserves incidences and containment in labeled sectors:

Observation 6. For a, p ∈ TPd and 0 ≤ i ≤ d, p lies in the (open/closed) sector i of Ha iff a lies in the
(open/closed) sector i of Hp. Moreover, p ∈ Ha iff ∈ Hp.

2.1 Systems of Tropical Linear Equations and Cramer’s Rule

One technical issue that arises in tropical geometry is that the definition of tropical linear subspaces is
somewhat subtle and that, in particular, the set-theoretic intersection of finitely many tropical hyperplanes
need not be a tropical linear subspace, see the discussion in [22]. To circumvent this a better-behaved
definition of an intersection using a tropical variant of Cramer’s rule was suggested in [22] (in general
position, both definitions agree). Cramer’s rule will be an important tool in our proof of the Centerpoint
Theorem 2. We recall some definitions.

Definition 7 ([22]). For a k × k-matrix C = (ci,j), the tropical determinant is

det
trop

(C) =
⊕
π∈Sk

(c1,π(1) � . . . ,�ck,π(k)),

where Sk is the group of permutations on [k]. A matrix is tropically singular if the tropical determinant
is attained at more than one permutation.

Lemma 8 (Geometric interpretation of a singular matrix, [22, Lemma 5.1]). A k×k-matrix A is tropically
singular iff the k points whose coordinates are the row (or column) vectors of A lie on a tropical hyperplane
in TPk−1.

Lemma 9 (Alternative characterization of general position). A n-point set S in TPd is in general position
if no k × k-submatrix of the n × (d + 1)-matrix (si,j) whose entries are the coordinates of the points is
tropically singular for any 2 ≤ k ≤ n.

Proof. The coordinates of a projection of k points onto a k-dimensional coordinate subspace is a k × k-
submatrix of the matrix (si,j) and vice versa. The result then follows from the previous Lemma 8.

Definition 10 ([22, Section 5]). Consider k ≤ d hyperplanes Ha1 , . . . ,Hak in TPd. Let A = (ai,j) be
k× (d+ 1)-matrix whose i-th row contains the apex of the hyperplane Hai . For any k-subset I of [0..d] let
AI be the k× k-submatrix of A consisting of the columns I, and define wI := dettrop(AI) to be its tropical
determinant.

For any (d − k + 2)-subset J of [0..d] and its complement JC , we define GJ :=
⊕

j∈J wJc∪j � xj =
minj∈J{wJc∪j � xj}, and let T (GJ) be the set of points x for which is attained at least twice. Then⋂

J⊆[0..d],|J|=d−k+2

T (GJ) ⊂ TPd, (1)

is called the Cramer intersection of the hyperplanes Hai .

The following theorem summarizes the most important properties of the Cramer intersection.

Theorem 11 ([22, Theorem 5.3]). The Cramer intersection is a region of codimension k in TPd. It is
always contained in the intersection of the hyperplanes. For hyperplanes, the two intersections are equal
if and only if none of the k × k-submatrices AI of A is tropically singular.

Lemma 12. For k = d, the Cramer intersection consists of just one point, and it is continuous in the
coordinates of the points ai.
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Proof. For this, we have to look at the GJ . For k = d, J is a 2-element subset of [0..d]. Let J = {j1, j2}.
Then GJ = wJc∪j1 � xj1 ⊕ wJc∪j2 � xj2 . This means that for T (GJ), wJc∪j1 � xj1 = wJc∪j2 � xj2 ⇔
xj1 − xj2 = wJc∪j2 − wJc∪j1 . As wJc∪j2 and wJc∪j1 are tropical determinants, and tropical determinants
are continuous in the coordinates of the points, the Cramer intersection is continuous.

Note that the coordinates of the point in the Cramer intersection of d hyperplanes Ha1 , . . . ,Had are
(wA|0, wA|1, . . . , wA|d), where wA|i is the tropical determinant of the d× d-matrix that we get if we delete
the i-th column of A = (ai,j). This holds, as in the proof above, wJc∪j2 = wA|j1 and wJc∪j1 = wA|j2 . So,
the problem of computing the Cramer intersection is equivalent to computing the tropical determinants of
d+ 1 different d× d-matrices. The tropical determinant of a d× d-matrix C = (ci,j) can be computed by
solving an assignment problem. For this, consider the weighted complete bipartite graph with d vertices
on each side, where the weight on the edge between the i-th vertex on the left and the j-th vertex on the
right side is ci,j . Then the tropical determinant is the same as the value of a minimum weight matching
on the graph. With the Hungarian algorithm, such a matching can be computed in O(d3) (see for instance
[24]).

Corollary 13. The Cramer intersection of d tropical hyperplanes in TPd can be computed in time O(d4).

In the proof of the tropical Centerpoint Theorem 2, we will use the following fact:

Lemma 14. If the same row r appears k times in a d × (d + 1) matrix A, then the Cramer intersection
x has at least k + 1 coordinates that minimize x+ r.

Proof. We augment the matrix A to a square (d+1)×(d+1)-matrix A′ by adding another copy of the row
r on top of it, and assume w.l.g. that the first k+ 1 rows of A′ are the copies of r. Let π be a permutation
where dettrop(A′) attains its minimum. This implies

det
trop

(A′) = rπ(1) + det
trop

(A|π(1)) = rπ(2) + det
trop

(A|π(2)) = · · · = rπ(k+1) + det
trop

(A|π(k+1))

= rπ(1) + xπ(1) + λ = rπ(2) + xπ(2) + λ = · · · = rπ(k+1) + xπ(k+1) + λ

for some λ ∈ R (see also remark after Lemma 12), which proves our claim.

2.2 Facts from Tropical Convexity

We recall a few basic facts about tropical convexity (see [10, 16]) that will be useful for what follows. The
first is a simple sufficient and necessary condition for a point to lie in the convex hull of a point set.

Proposition 15. [16, Proposition 2.9] Let X = {x1, . . . , xn} ∈ TPd. Then p ∈ tconv(X) iff each closed
sector i ∈ [0..d] of H−p contains at least one point in X.

This means that p ∈ tconv(X) iff for each coordinate j ∈ [0..d], there exists an xi such that (xi−p)j = 0
for xi − p in canonical coordinates.

Theorem 16. The following sets are tropically convex: tropical hyperplanes [10, Proposition 6], closed
tropical halfspaces [16, Proposition 2.17] and open tropical halfspaces [16, Corollary 2.18] (in particular,
this applies to open or closed sectors), the boundaries of tropical halfspaces [16, Corollary 2.18], intersec-
tions of two tropically convex sets [10, Theorem 2].

Lemma 17 ([16, Lemma 2.16]). Let a+ S̄k ∈ TPd−1 be a closed sector for some k ∈ [0..d], and b ∈ a+ S̄k.
Then the “parallel” sector b+ S̄k is contained in a+ S̄k.

3 Tropical Versions of Classical Theorems in Convexity

3.1 Separating Two Convex Polytopes

f

�
�

�
�

��

�
�
��

Q

P

p

qf

Figure 2: A pair of nearest
points p and q.

The classical Farkas’ Lemma states that a point p is either contained
in a polytope or is separable from it by a halfspace. In the tropical
case, the analogous statement was shown in [16, Theorem 2.19]. Our
separation theorem 1 is a stronger statement. Instead of just a point
and a polytope, we separate two polytopes.

In classical the classical case, the proof idea very simple: For any
pair p ∈ P and q ∈ Q that minimize ‖p− q‖, any hyperplane orthogonal
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to the segment pq and passing through its midpoint, say, is easily seen
to separate P from Q. In tropical geometry, however, an arbitrary pair of nearest points is in general not
sufficient to determine a halfspace that separates the two sets (see Figure 2). In order to create a stronger
nearest notion of nearest point pairs, we use the tropical nearest point map as defined in [10]:

Definition 18. For a polytope P = tconv(V ) in TPd, where V = (v1, v2, . . . , vn),
the tropical nearest point map on P πP : TPd → P is defined as

πP (x) = λ1 � v1 ⊕ λ2 � v2 ⊕ . . .⊕ λn � vn,

where λi = min{λ ∈ R : λ� vi ⊕ x = x}.

We will now show that there exist a pair of points p ∈ P and q ∈ Q which map to each other under
the respective nearest point maps.

Lemma 19. For any polytope P , πP is weakly contracting; i.e. ‖πP (x)− πP (y)‖ ≤ ‖x− y‖ ∀x, y.

Proof. By translation invariance, we may assume that x = (0, 0, . . . , 0) and y = (y0, y1, . . . , yd−1, 0), where
y0 ≥ y1 ≥ . . . ≥ yd−1 ≥ 0 (after a possible re-ordering of the coordinates). Let V = (v1, v2, . . . , vn) be
the vertices of our polytope P = tconv(V ), where the vi = (vi,0, . . . vi,d) are in canonical coordinates.
Then πP (x) =

⊕n
i=1 vi, since min{λ ∈ R : λ � vi ⊕ x = x} = 0. Furthermore, πP (y) =

⊕n
i=1 λi � vi for

λi := min{λ ∈ R : λ� vi⊕ y = y}. Since every vi contains a zero coordinate, and y is non-negative, λi ≥ 0
for every i. Further, every vi is nonnegative, so y1 � vi is greater or equal than y in every coordinate,
implying λi ≤ y1. So, for 0 ≤ j ≤ d,

πP (x)j =
n⊕
i=1

vi,j ≤
n⊕
i=1

λi � vi,j = πP (y)j ≤
n⊕
i=1

y0 � vi,j = y0 + πP (x)j .

⇒ 0 ≤ πP (y)j − πP (x)j ≤ y0 ⇒ ‖πP (x)− πP (y)‖ ≤ y0 = ‖x− y‖ .

Lemma 20. For any two tropical polytopes P and Q, there exists a pair of points x ∈ P and y ∈ Q such
that y = πQ(x) and x = πP (y).

Proof. We use that P,Q ∈ TPd are compact sets. Let B be a closed (classical) ball in TPd that contains
P . We define a function f : B → P ⊆ B as f(x) := πP (πQ(x)). Due to Lemma 19, πQ and πP are both
weakly contracting, so f is also weakly contracting. This implies that f is continuous. Consequently, due
to the Brouwer fixed point theorem [20], there exists a point x such that x = f(x). Since f maps points
to P , we must have x ∈ P , and for y = πQ(x), πP (y) = πP (πQ(x)) = f(x) = x.

Proof of the Separation Theorem 1. Let x ∈ P and y ∈ Q such that y = πQ(x) and x = πP (y), according
to Lemma 20. We again assume w.l.g. that x = (0, . . . , 0) and y = (y0, . . . yd−1, 0), where y0 ≥ y1 ≥ . . . ≥
yd−1 ≥ 0. Now we examine the position of Q relatively to y. Let Q = tconv(V ) = tconv(v1, . . . , vk) where
the vi = (vi,0, vi,1, . . . , vi,d) are again in canonical coordinates. For 0 ≤ j ≤ d,

yj = πQ(x)j =
k⊕
i=1

vi,j ≤ vi,j ∀ 1 ≤ i ≤ k,

so vi − y is non-negative for all i. Since y also is non-negative, vi,j = 0 always implies that yj = 0 and
vi,j − yj = 0. Consequently, any minimal coordinate of any vi is also a minimal coordinate of y and of
vi − y. So, each point vi lies in

⋃
j|yj=0 y + S̄j . Because this is a closed halfspace, and hence convex by

Theorem 16, Q is contained in this halfspace.
Applying the same argument as above, for P instead of Q, we deduce that P lies in

⋃
k|yk=y0 x+ S̄k.

Let the i-th coordinate be the smallest nonzero coordinate of y, and for some fixed 0 < λ < yi, consider
the point sλ := λ� x⊕ y = (λ, . . . , λ, 0, . . . , 0). We claim that P is contained in the open halfspace with
apex in sλ and sectors 0 to i, and Q is contained in its open complement.

Let p ∈ P . Then as x = 0, we have shown that for p, one of the coordinates k, for which yk = y0, is
minimal. For p− sλ, this means that the minimal coordinates are all in the first i positions. This implies
that p is in the desired halfspace.

Let q ∈ Q. For at least one minimal coordinate j of q − y we have yj = 0 and consequently (sλ)j = 0.
Since y− sλ is nonnegative and only zero in coordinates j where yj = 0, (q− y) + (y− sλ) = q− sλ is only
minimal in coordinates where yj = 0, as required.
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3.2 The Centerpoint Theorem and Tverberg’s Theorem

Recall that for a set P of n points in TPd, a point c ∈ TPd is called a tropical centerpoint of P if each
tropical closed halfspace containing c contains at least n

d+1 points of P . A hyperplane with apex on a
tropical centerpoint contains at least n

d+1 points in each closed sector. Further, an apex of a hyperplane
that contains at least n

d+1 points in each closed sector always is a centerpoint, as by Lemma 17, any closed
tropical halfspace containing the apex also contains at least one sector of the hyperplane.

Proof of tropical Centerpoint Theorem 2. Let P be a set of n points in TPd. We want to show that a
tropical centeropoint for P exists and can be computed in time O(n4). We may assume that n = k(d+1)+1
for a k ∈ N (since for k(d+ 1) + 1 < n < (k+ 1)(d+ 1) + 1, every tropical centerpoint of a (k(d+ 1) + 1)-
subset of P is also a centerpoint of P ). We interpret P as a (d + 1) × n matrix (pi,j), with the j-th
column corresponding to the j-th point. Let ri ∈ Rn be the i-th row vector of the matrix P = (pi,j). In
Rn = Rk(d+1)+1, we compute the Cramer intersection of k copies of each of of the hyperplanes Hri , thus
the intersection of k(d + 1) hyperplanes in total. By Lemma 14, the solution x ∈ Rn has the additional
property that the minimum of each x+ ri is attained at least k + 1 times. We define q ∈ Rd+1 to contain
exactly those minima, i.e. (x+ri)j−qi = xj+pi,j−qi ≥ 0 ∀j ∈ [n], and = 0 for at least k+1 many indices
j, for any fixed i ∈ [0..d]. But now we are done, because if we interpret this in TPd, this means nothing
else than for any i ∈ [0..d], pj − q attains its minimum in coordinate i (the value of the minimum is −xj),
for at least k+ 1 many points pj , or in other words that the hyperplane with apex q contains k+ 1 points
in every closed sector i. This is equivalent to q being a centerpoint by our above remark. We conclude
the proof by observing that algorithmically, the intersection of k(d+ 1) many tropical hyperplanes can be
computed in time O((k(d+ 1))4) = O(n4) as stated in Theorem 11.

Our above proof can also be interpreted in view of the following isomorphism; instead of finding the
centerpoint q directly, our algorithm finds −x, which then maps back to q under the isomorphism:

Theorem 21 ([10, Theorem 23]). Given any matrix M ∈ Rn×d, the tropical convex hull of its column
vectors is isomorphic to the tropical convex hull of its row vectors. The isomorphism is obtained by
restricting the piecewise linear maps Rd → Rn z 7→M � (−z), and Rn → Rd y 7→ (−y)�M .

Next, we want to prove the tropical Tverberg Theorem 3. We restrict ourselves to the case of point
sets in general position (the degenerate case follows by a simple compactness argument). Thus, let P be
a set of at least (d+ 1)(r− 1) + 1 points in general position in TPd, where r, d ≥ 1. Recall that a partition
P = P1∪̇ . . . ∪̇Pr with

⋂r
i=1 tconv(Pi) 6= ∅ is called an r-Tverberg partition of P , and any point in the

intersection is called an r-Tverberg point. As in the classical case, it is easy to see that

Lemma 22. Every tropical Tverberg point of P is a tropical centerpoint.

We will show that in the tropical case, the reverse implication also holds and that, given a centerpoint
(which we can compute in time O(n4) by Theorem 2), we can compute a corresponding Tverberg partition
in time O(nd).

Proof of Theorem 3. Let us look at a hyperplane H with apex at a tropical centerpoint of P . Each closed
sector of H contains at least r points. We look at the following bipartite graph G = (V,E) given by
the position of the points relative to this hyperplane: V := [0..d] ] P , E := {{i, j} | i ∈ [0..d], j ∈
P, p lies in the closed sector i of H}. What we need to show is that we can color the vertices P with r
colors so that every vertex in [0..d] is adjacent to r different colors. If we partition the points according to
their color, then each partition has a point in each closed sector of H. According to Proposition 15, this
means that the apex of H is in the convex hull of each such partition, proving the theorem.

As each closed sector of H contains at least r points, |E| ≥ (d+1)r. We now prove that G is cycle-free,
implying that it is a tree, since |V | = r(d + 1) + 1. Assume for sake of contradiction that G contains a
cycle, and assume w.l.g. that the shortest cycle is 0, p0, 1, p1, 2, . . . , k, pk, 0. We look at the projections
p′0, . . . , p

′
k of the first k+1 points onto the subspace spanned by the first k+1 coordinates. As coordinates

0 to k are unaffected by this projection, for 0 ≤ i ≤ k − 1, the points p′i lie in both sectors i and i + 1,
and p′k lies in both sectors 0 and k. So, each of these points lies on the projection of H, which is a tropical
hyperplane. This is a contradiction to the assumption that the points are in general position.

What is left is coloring the graph according to the above conditions. This can be done greedily: Starting
at a vertex in [0..d], we color all adjacent edges with different colors. We then traverse the tree, always
maintain that all vertices adjacent to a vertex in [0..d] are colored differently.
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Corollary 23. Every tropical centerpoint of P is also a tropical Tverberg point. Given a centerpoint a
corresponding tropical r-Tverberg partition can be computed in O(nd) time.

Proof. Given a tropical r-Tverberg point p, we need O(n(d + 1)) time to determine in which sector of
H−p each point in P lies. After that, partitioning the points can be done by graph-traversal, in time
O(|V |) = O(r(d+ 1) + 1) = O(n+ d).

This is in contrast to classical geometry, where there exist point configurations for any n = (r− 1)(d+
1)+1 points in general position in Rd where d ≥ 3 and r ≥ 3 such that some centerpoints are not Tverberg
points. Moreover, there is no known polynomial time algorithm for computing classical Tverberg points
or Tverberg partitions in variable dimension [1].

The special case r = 2 yields:

Corollary 24 (Tropical Radon Lemma). Every set P ⊂ TPd of d + 2 or more points can be partitioned
into two disjoint sets P1 and P2 such that tconv(P1) ∩ tconv(P2) 6= ∅.

Completely analogously as in the classical case (see e.g. [18, Section 1.3]), one can use Radon’s Lemma
and induction to prove:

Theorem 25 (Tropical Helly Theorem). Let C1, C2, . . . , Cn be tropically convex sets in TPd, n ≥ d + 1.
Suppose that the intersection of every d+ 1 of these sets is nonempty. Then the intersection of all the Ci
is nonempty.

We remark that, like its classical cousin, the tropical Helly Theorem is sharp, in the following sense:

Proposition 26. There exists a set of d + 1 tropically convex sets C0, C1, . . . , Cd in TPd such that the
intersection of any d of these is nonempty, but

⋂d
i=0 Cd = ∅.

Proof. Consider the sets Ci := {(x0, . . . , xd) | xi ≥ xj for j ∈ [0..d]} \ {0}. These are tropically convex,
since for two points x1, x2 ∈ Ci and λ, µ ∈ R it holds that

(λ� x1 ⊕ µ� x2)i = (λ� x1)i ⊕ (µ� x2)i ≥ (λ� x1)j ⊕ (µ� x2)j = (λ� x1 ⊕ µ� x2)j

for any j ∈ [0..d]. Each set Ci contains d points of S = {−ej |j ∈ [0..d]}, so any intersection of d of these
sets contains at least one point of S. Finally, for a point in

⋂d
i=0 Cd, every coordinate needs to be maximal.

However, the only point with this property is the origin, which does not lie in any set Ci.

We can use Radon’s Lemma in the framework of VC-dimension. A range space is a tuple (X,R) of
a set X (called the points) and a family of subsets R ⊆ 2X (called the ranges). A set S ⊆ X can be
shattered by R if |{r ∩ S|r ∈ R}| = 2|S|. The VC-dimension of a range space VC-dim(X,R) is the
maximal cardinality of a subset of X that can be shattered by R.

Let Hd be the family of halfspaces in TPd, and let Sd ⊂ Hd be the family of single sectors in
TPd., so VC-dim(TPd,Hd) ≥ VC-dim(TPd,Sd). Tropical Radon’s Lemma states that for d + 1 points
in TPd, there exists a partition into two sets with intersecting convex hull, which are therefore not sep-
arable by any halfspace. This shows that VC-dim(TPd,Hd) ≤ d. On the other hand it is obvious that
VC-dim(TPd,Hd) = d. For this, consider a set of d points in TPd, one in each open sector Si. Then these
points are shattered by halfspaces with apex at 0. The following Lemma strengthens this by showing that
also VC-dim(TPd,Sd) = d.

Lemma 27. There exists a set of d points in TPd that can be shattered by single sectors.

Proof. We claim that P = (p1, . . . , pd), pi := −ei is such a set. Let 0 < c1 < c2 < 1 and let Q = (q1, . . . , qk)
be any nonempty subset of P . We choose the apex a of a hyperplane as follows: ai := 1 + c1 if pi = q1,
ai := c2 if pi /∈ Q, and ai := 0 otherwise. It is easy to verify that for i such that pi = q1, it holds that
pj ∈ a+ Si iff pj ∈ Q.

3.3 Colorful Theorems

Proof of Theorem 4. Applying the characterization of convexity from Proposition 15, we know that each
closed sector of the tropical hyperplane with apex at 0 contains at least one point of each Mi. So for each
closed sector i, we select one point of color Mi to be included in S. This already is sufficient, since again
Proposition 15 will imply that 0 ∈ tconv(S).

An elementary proof of the tropical colored Tverberg Theorem 5 is given in Appendix A, and is
interestingly much easier than the proof of its classical counterpart which requires topological methods
[29, 17].
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4 Counting Problems

4.1 Tropical Hyperplane Arrangements
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Figure 3: Some types of an arrange-
ment of 2 hyperplanes in TP2.

We consider the complexity of tropical hyperplane arrangements,
following the work of Ardila, Develin and Sturmfels [2, 10]. A
tropical hyperplane arrangement is the polyhedral decomposition
of TPd given by a set of hyperplanes. If two points lie in the same
region of a given hyperplane arrangement, we say they have the
same type:

Definition 28. Given a tropical hyperplane arrangement
H1, . . . ,Hn in TPd, the type of a point x is the n-tuple
(A1, . . . , An), where Ai ⊆ [0..d] is the set of closed sectors of
the hyperplane Hi that contain x.

Definition 29. A tope is a type A = (A1, . . . , An) where each
Ai is a singleton. We also use the notation A(a1, . . . , an) for
topes, if Ai = {ai}.

Due to the following result, the bounded regions in a hyperplane arrangement Hp1 , . . . ,Hpn correspond
to a natural decomposition of the polytope tconv(p1, . . . , pn) as a finite union of ordinary polytopes, which
is called the tropical complex generated by P = (p1, . . . , pn):

Theorem 30. [10, Theorem 15] The convex hull of a finite point set P is the union of the bounded regions
of the polyhedral decomposition of TPd given by putting an inverted hyperplane at each point of P .

Also, [10] showed that the types of this hyperplane arrangement determined by P are in bijection with
the regular triangulations of the product of two simplices ∆n−1 × ∆d, of which the complexity is well
understood:

Corollary 31. [10, Corollary 25] All tropical polytopes spanned by n points in general position in TPd have
the same f -vector. Specifically, the number of faces of dimension k is equal to the multinomial coefficient(

n+d−k−1
n−k−1, d−k, k

)
.

Observation 32. A type corresponds to a bounded region iff every direction i ∈ [0..d] occurs in at least
one coordinate. A type is unbounded in direction i iff i does not occur in any coordinate.

Proof. We refer to [10, Corollary 12]. Note that [10] uses a different notation for a type S = (S1, . . . , Sd),
with Si denoting the set of hyperplanes for which a given point lies in sector i.

In the following we use the geometric equivalent of a projection operation by [2], such that for each
unbounded region, there exists exactly one such projection for which the region becomes bounded.

Proposition 33. We define the geometric contraction of a tropical hyperplane arrangement in dimen-
sions S to be its projection onto the coordinate subspace [0..d] \ S. Then a geometric contraction of a
tropical hyperplane arrangement in d dimensions is a tropical hyperplane arrangement in d − |S| dimen-
sions. If a tropical hyperplane arrangement is in general position, then all its geometric contractions also
are in general position. If M is the set of types in a tropical hyperplane arrangement, then the set of types
in its geometric contraction in dimensions S is M/S, which consists of all types of M which do not contain
any element of S in any coordinate.

Proof. The first two claims are obvious, so we only need to prove the last claim.
Let A be a type of M which does not contain any element of S in any coordinate. Then for a point p

with type A, we have that

S ∩ {argmin(p+ q) | Hq is a hyperplane in the arrangement} = ∅ .

This implies that for each hyperplane Hq, argmin(p+ q) is preserved when projecting onto the coordinate
subspace, so the type A is preserved. Therefore, every type of M/S still exists in the geometric contraction
in directions S. On the other hand for an arbitrary point p of type A that might contain elements of S in
some coordinates, for some c ∈ R large enough, the type of the point p∗ = p+ c

∑
i∈S ei will not contain

any element of S. As p and p∗ are projected onto the same point by the geometric contraction, we have
that the types in the geometric contraction in directions S are indeed equal to M/S .
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Theorem 34. All tropical hyperplane arrangements of n hyperplanes in general position in TPd have the
same f -vector. Specifically, the number of faces of dimension k is equal to

(
n+d−k−1
n−1

)(
n+d
k

)
.

Proof. We consider the set of all geometric contractions of the arrangement. Each region is either bounded
in the original arrangement or is bounded in exactly one geometric contraction, namely the contraction
in all of the region’s unbounded directions. This defines a bijection between the bounded regions in the
geometric contractions and unbounded regions in the original arrangement. We can therefore count all
k-dimensional cells by just counting all k − |S|-dimensional bounded cells of all contractions plus the
bounded cells in the original arrangement. For d-dimensional arrangements defined by n points in general
position, all contractions are in general position, so according to Corollary 31 they have the same f -vector.
Using Vandermode’s identity, we obtain for the number of regions:∑

S⊂[0..d]

(
n+d−k−1

n−(k−|S|)−1, d−k, k−|S|
)

=
∑d
i=0

(
d+1
i

)(
n+d−k−1

n−(k−i)−1, d−k, k−i
)

=
∑k
i=0

(
d+1
i

)(
n+d−k−1

d−k
)(
n−1
k−i
)

=
(
n+d−k−1

d−k
)∑k

i=0

(
d+1
i

)(
(n+d)−(d+1)

k−i
)

=
(
n+d−k−1

d−k
)(
n+d
k

)
.

4.2 k-Sets
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Figure 4: A k-set in TP2 and its dual

For an n-point set P , a k-point subset S ⊆ P is called a
k-set if there exists an open halfspace that contains S,
and its open complement contains P \ S.

Upper Bound. In order to upper bound the number
tropical k-sets for a point set P , we use the simple du-
ality from Observation 6. Consider the dual hyperplane
arrangement of P . A set S ⊆ P of size k is a k-set if we
can partition the directions [0..d] into D1 and D2 such
that a point q exists that only lies in closed sectors D1

of any hyperplane dual to a point s ∈ S, and only lies
in closed sectors D2 of any hyperplane dual to any other point (See Figure 4). In the tropical matroid
interpretation, this means that S is a k-set if there exists a type of which k components are subsets of D1

and all n− k other components are subsets of D2. We say that such a type realizes S. Due to continuity,
any type that realizes a k-set S has a neighboring full-dimensional region (tope) that also realizes S. That
means that for each k-set, there exists one or several topes that realize it. For upper bounding the number
of topes, we use the following Lemma:

Lemma 35. Let A = (a1, . . . , an) be a tope in a hyperplane arrangement Hp1 , . . .Hpn in TPd. For each
permutation π of [n] we let Aπ := (aπ(1), aπ(2), . . . , aπ(n)). Then for each Aπ, either Aπ = A or Aπ /∈M .

Proof. If all ai are equal, then obviously Aπ = A must hold. So we assume that not all ai are equal,
and Aπ = A does not hold. Let pi = (pi,0, . . . , pi,d), and let x be a point with type A and y be a point
with type Aπ. Then for 1 ≤ i ≤ n, since x lies in the open sector ai of hyperplane Hpi , we have that
xai + pi,ai ≤ xaπ(i) + pi,aπ(i), where equality holds iff ai = aπ(i). Further, y lies in the open sector aπi of
hyperplaneHpi , so yaπ(i) +pi,aπ(i) ≤ yai+pi,ai , where equality again only holds iff ai = aπ(i). Consequently,
xai−yai ≤ xaπ(i)−yaπ(i) , and equality holds iff ai = aπ(i). Since Aπ 6= A, there exists at least one element i
for which ai 6= aπ(i). Such an element obviously lies in a permutation cycle, so applying the last inequality
on each element of this cycle would give a inequality series that adds up to xai − yai < xai − yai .

To count the number of k-sets that can be separated by halfspaces consisting of just single sectors,
we fix a direction i ∈ [0..d] corresponding to this single sector. Then the corresponding partition of the
directions is very simple: D1 = {i}, D2 = [0..d] \ {i}. For a fixed direction, each tope may only realize
one k-set. Hence, there are at most as many k-sets for fixed direction i as there are topes for which k
components are equal to i. We compute the number of topes with help of Lemma 35. Keeping fixed the k
components that are equal to i, we can choose the remaining n− k components from (d+ 1)− 1 different
values. Without permutations, this yields

(
n−k+d−1
n−k

)
possibilities. If we now add up all directions, we get

an upper bound of (d + 1)
(
n−k+d−1
n−k

)
∈ O((n − k)d−1) on the number of k-sets which can be realized by

single sectors.
For the number of k-sets that can be separated by general halfspaces, we proceed similarly: Let us fix

D1 ⊂ [0..d], and sum up over all possible D1. We note that for fixed D1, any tope can again only realize
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one k-set. Therefore we can limit the number of k-sets for a fixed direction by the number of topes. Let
|D1| = j. Using Lemma 35, we again fix the k components which are in D1, and count the number of
possibilities for the other n−k components which are in D2 = [d]\D1. Using the same counting technique
as above, we get at most

(
k+j−1
k

)(
n−k+d−j
n−k

)
topes. Summing up over all possible D1 ⊂ [0..d], we obtain∑

D1⊂[0..d]

(
k+|D1|−1

k

)(
n−k+d−|D1|

n−k
)

=
∑d
j=1

(
d+1
j

)(
k+j−1
k

)(
n−k+d−j
n−k

)
<
∑d
j=1 2d+1

(
k+j−1
k

)(
n−k+d−j
n−k

)
= 2d+1

(
n+d
n+1

)
≤ 2d+1 (n+d)d−1

(d−1)! ∈ O(nd−1)

for n > d, which we may assume, since otherwise every k-set is realizable (see our above discussion of
Radon’s Lemma, Corollary 24).
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Figure 5: A sketch of construction I
for 15 points in TP5. The bold line
depicts a halfspace realizing a 5-set.

Lower Bound. For the lower bound on the number of k-sets, we
present two constructions, only considering halfspaces consisting of
a single sector.

Construction I. This construction achieves Ω(kd−1) many k-
sets for k < n

d . We choose n so that n
d is an integer. For 1 ≤ i ≤ d

and 1 ≤ r ≤ n
d , we let P = (p1, . . . , pn), where prd+i = −r ei. If we

consider the hyperplane Ha where a = (a0, . . . , ad−1,−ε) for some
0 < ε < 1 and integral 0 ≤ ai ≤ n

d . For each point prd+i, the d-th
component of a+ prd+i is −ε. The only other component that may
be negative is the i-th, which is negative iff ai < r. In this case, this
is the minimal component, since ai +−r is an integer. This means
that there are

∑d−1
i=0 ai points in sector d of Ha. By varying the

choice of vector a, we get a different point set in sector d of Ha. So,
there are at least as many k-sets in P as there are integral vectors
(a0, . . . , ad−1) such that 0 ≤ ai ≤ n

d and
∑d−1
i=0 ai = k. These are

difficult to count if k > n
d , but since we assumed k ≤ n

d , we obtain
that there are

(
k+d−1
d−1

)
∈ Ω(kd−1) many k-sets in this setting.
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Figure 6: A sketch of construction
II in TP5. The bold line depicts a
halfspace realizing a (5 + j)-set.

Construction II. For the case k > n
d , we proceed analogous

to Construction I, with the exception that we place j points along
the ray {λ (−ed)|λ > 0}. The remaining n− j point are split up as
in Construction I. We choose j such that

j +
n− j
d
≥ k ≥ j +

n− j
d
− 1.

⇔ (d− 1)j + n ≥ kd ≥ (d− 1)j + n− d

⇔ kd− n
d− 1

≤ j ≤ (k + 1)d− n
d− 1

.

Such an integer j obviously exists, since the gap between the lower
and the upper bound is greater than 1. For k > n

d , j is positive. We
look at similar hyperplanes as in Construction I. We only consider
k-sets that contain all j points of sector d. Of the other sectors, each
such k-set might contain k − j points in total, so for each direction
i ∈ [0..(d− 1)], a k-set may contain between 0 to k − j points from

sector i. Now since k− j ≥ n−j
d − 1 ≥ n− (k+1)d−n

d−1
d − 1 = n−k−1

d−1 − 1,
the number of k-sets that we count this way for d ≥ 2 is(n−k−1

d−1 + d− 2
d− 1

)
≥
(

n− k
(d− 1)2

)d−1

∈ Ω((n− k)d−1).
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97 (Lübeck), volume 1200 of Lecture Notes in Comput. Sci., pages 261–282. Springer, Berlin, 1997.

[14] Jonathan S. Golan. Semirings and their applications. Kluwer Academic Publishers, Dordrecht, 1999.

[15] S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar set of points in linear
time. Discrete Comput. Geom., 12(3):291–312, 1994.

[16] Michael Joswig. Tropical halfspaces, 2003. Available from: http:arXiv.org/abs/math/0312068.
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A Proof of the Tropical Colored Tverberg Theorem

For the proof of Theorem 5, we need the following Lemma, which is a slight variation of the Centerpoint
Theorem:

Lemma 36. For kd points in general position in TPd there exists a hyperplane H such that each open
sector of H contains k points.

Proof. We introduce a new fictional point q and then apply tropical Centerpoint Theorem 2 on P∪{q}. This
implies that there exists a point c containing k+ 1 points in every closed sector of H−c. Let us look at the
bipartite graph G = (V,E) with V := [0..d]] (P ∪{q}) and E := {{i, p} | p lies in closed sector i of H−c}.
As we have shown in the proof of tropical Tverberg Theorem 3, for a centerpoint this graph is a tree,
where every “left” vertex i ∈ [d] has degree k + 1. We now want to delete vertex q and a some edges, so
that every left vertex has degree k, but every right vertex still has degree 1. As G is a tree, this is feasible
as follows: If we root the tree at q and let q lie on the 0-th level of the tree, then all points lie on even
levels and dimensions lie on odd levels. We delete all edges leading down from even levels. Since every
node has exactly one parent, each point remains incident to an edge (except for q) and each dimension
only loses one edge by the deletions, so still has degree k.

Let us see what the geometrical equivalent to deleting these edges is. Let 2l be the number of levels
of the tree. This number always is even, as all leaves are points and are on the right side of the tree. We
choose ε1 > ε3 > ε5 > . . . > ε2l−1 = 0, where ε1 is smaller than the distance of any point in P \ H−c to
H−c. We let the apex of H be at

c−
d∑
i=1

εlevel of i in Gei.

Because the εi are sufficiently small, no point may lie in a sector of H in which it does not lie for H−c.
Further, each point lying on the hyperplane H−c lies in only one sector of H, namely in the one of its
parent in the tree G. So if we draw the same bipartite graph for the apex of H as we did for c, we get
graph described above, which has the desired properties.

Proof of the tropical colored Tverberg Theorem 5. Using Lemma 36, we find a hyperplane H such that
every open sector of H contains k points. We now want to show how to choose Pi such that the apex of H
is in the tropical convex hull of each Pi. According to Proposition 15, any Pi that contains the apex must
contain at least one point from each sector of the hyperplane. Since there are only t points in a sector,
each Pi contains exactly one point of each sector. The following claim implies that these Pi can be chosen
as desired:

Claim 1. Given a t× d grid of tiles that are colored with d colors such that always t tiles are colored with
the same color. Then we can rearrange the tiles by permuting within the columns so that each row contains
each color (is rainbow).

Proof of claim. Proof by induction. For t = 1, the claim is obvious. For a fixed t, we only need to prove
that the first row can contain each color. The rest follows by induction, as we may then ignore the top row
when permuting. We assume for sake of contradiction that the top row can not contain tiles of each color
by permuting elements within columns. Let the top row contain a maximal number of different colored
tiles. We look at the directed graph G = (V,E), where V is the set of colors and
E = {(x, y)| y is in the top row of a column that also contains x}. A directed path from a color missing
in the top row to a color that occurs more than once would yield an improvement in the number of colors
on the top row and, due to our assumption, must not exist. So, starting from some missing color x, we can
only reach k < d vertices (including x). Then these k colors must be fully contained in k−1 columns, which
is impossible, since there are tk blocks of these k colors, but only t(k − 1) blocks in these columns.

Now the connection between the claim and Theorem 5 is easy to see: Each column of blocks corresponds
to a sector and a single block corresponds to a point. The rows will thus determine our desired sets Pi.
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