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/ Summary

* Frank-Wolfe (FW) is a popular algorithm for
constrained optimization over combinatorial
objects, but its rate is sublinear

 We show the global linear convergence for the
first time of several variants of FW:

away-steps FW (AFW), pairwise FW (PFW), fully-corrective FW
(FCFW) and Wolfe’s min-norm point algorithm (MNP)

e The constant in the rate introduces the
‘condition number’ of the constraint set:
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Problem Setup

We want to optimize over: M = conv(.A)

min f()

with only access to a linear minimization oracle:

A C R%is a finite set of atoms

LMO4(r) € arg min(r, x)
xc A

assume f 1s p-strongly convex

and V f 1s L-Lipschitz continuous

Examples: QP over combinatorial polytopes

1) for submodular function optimization [3],

M is base polytope, A contains indicators on subsets

2) for structured SVM learning [21] or for
approximate marginal inference [18] (poster #48),

M is marginal polytope,
A contains joint assignments in a MRF

3) for tracking [7] or video co-localization [16],

M is flow polytope, A contains integer flows

video co-localization [16 - Joulin et al. ECCV14]:
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Variants of FW

alternatively,
pairwise FW
direction

/ x* Sy

Algorithm 1: Away-steps Frank-Wolfe: AFW(z(9) A, ¢)

Let 29 € Aand SV :={z(9}; we maintain z*) = }° ol v
fort =0...7 do veSH
Let s; := LMO4 (Vf(z™®)) and dfV := s, — 2¥)
(the FW direction)
Let v; € argmax (Vf(z"),v) and d) := V) — v,
veSH) (the away direction)
if gV := (-Vf(z),d'V) < ¢ then return 2"
it (—Vf(x®),diV) > (-Vf(z¥),d}) then
d;, = df Woand Ypax 1= 1 (choose the FW direction)
else
d; := d*, and Yy = o, [ (1 — )

(choose the away direction, and maximum feasible step-size)

end
Line search: y; € argmin f ('Y + ~vd,)
v€[0,vmax]
Update 2t = ) vedy (and weights ottt accordingly)
Update St .= {v s.t. alf ™" > 0}
end

Algorithm 2: Pairwise Frank-Wolfe: PFW (z(?), A ¢)

... asin Algorithm 1, except using d; = d;" .= s; — vy,

and Ymax 1= Qp,

Fully-corrective FW: at each step, make
correction over convex hull of visited vertices
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/ Convergence Result

* THM: Global linear convergence for the four
variants of FW for strongly convex f:

e away-steps FW (AFW) e fully-corrective FW (FCFW)
e pairwise FW (PFW) * min-norm point alg. (MNP)

Let hy := f(z™®) — f(x*) be the suboptimality, then:
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where
geometric strong convexity constant (new!)

kg > p(pyr. width(M))?

1T Cp < L(diam(M))?

\ curvature constant

and k(t) := number of ‘good steps’
after t iterations:

k(t) =t for FCFW;

k(t) >1t/2 for AFW and MNP;

k(t) > t/4|A]l  for PFW
properties:

e analysis is affine invariant
e constant bounded away from zero (unlike [12] for AFW)
e first linear convergence result for FCFW and MNP
e can be generalized also to: f(x) := g(Ax) + (b, x)
with g strongly convex
e gives condition number’ for domain M:
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pyramidal width: M

e smallest directional width of pyramids
built with active set as base, FW point as summit,
and using a feasible direction

*value of ~1/vd forboth
the prob. simplex and
unit cube in dimension d ()

a A

e as f has L-Lipschitz gradient: let r; := —V f(z")

Proof Elements

2
F@) < f@0 +qdy) < f@) 45 (V@) do) + SLdi]? ¥ € [0, el

<’rt,dt>2 1 5\ 2
_— = — d
oL|d,||2 ~ 2L (e, )

(When “Ymax

Choose v to minimize RHS:  hy — hyyq > is big enough)

e as f is u-strongly convex: with e, 1= * — z(®

2
(@ +ve) > f2®) + 4 <Vf(:v(”),et> + %ullet\lz Yy € [0,1]

<Tta ét>2
2p

Use v = 1 on LHS; compare with lower bound of RHS: hy <

- . dy)? ;
Combine to get: hy — hyay > /2 (re, dy) h, > ﬁ<ft,dt>2 h,

(valid for any d;)

oy —

(T, €4)7 Lo =
angle between
negative gradient
and update direction

* 2 Key points:

2(ry, dy) > (”’t,dfw +d24>
= (ry, d;"") for AFW

<rﬁ JPFW(f)> - PWidth(M)

diam (M)

(see illustration on right showing
possible PFW directions as r varies)

lllustrative Experiments
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e Gaussian matrix A € R200x500 02

e b= Axz" +0.1-Gaussian noise ¢/
where x* has 50 entries of +1°s

10%¢

e regular simplex has smallest O
cond. number: d/2
giving O(dﬁ log +) complexity 5
e cond. num. of cube: ({2

t

pyr. width(cube) = 1/v/3
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Video °
co-localization [16]:

* QP over flow-polytope

d =660 g 10"

* LMO,4 can be solved
using shortest path DP
algorithm in a network
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Empirical tightness of rate: .. o]
Q 40+ -
M = 2 COS(? %30— ;
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