
Implementations of 3 Types of the
Schreier-Sims Algorithm

Martin Jaggi m.jaggi@gmx.net

MAS334 - Mathematics Computing Project

Under supervison of Dr L.H.Soicher

Queen Mary University of London

March 2005

1 Permutation Groups

1.1 Definitions ans basic properties

A permutation group on a set Ω is a subgroup of the symetric group
Sym(Ω) (all permutations of the set Ω with operation composition).

If G is an arbitrary group, an action of G on Ω is a group homomor-
phism G −→ Sym(Ω). So the image of an action is a permutation group.
(Sometimes actions are called permutation representations, and |Ω| is called
the degree of such a representation.)

We denote the image of an element (or ’point’) ω ∈ Ω under the action
of g ∈ G by ωg.1

The orbit of a point ω ∈ Ω under G is the set ωG := {ωg | g ∈ G}. Orbits
partition the set Ω and ’being in the same orbit’ is an equivalence relation.

The stabilizer of a point ω is the subgroup Gω := {g ∈ G | ωg = ω}.

We say that a group G is generated by a subset S, G = 〈S〉, if every
element of G can be written as a product s1 · · · sr with si ∈ S or s−1

i ∈ S for
all i.

1In the C++ implementations, we will denote the image of ω under g by g.p[ω]

1

Proposition 1.1 (Orbits and Stabilizers). If a finite group G acts on Ω,
and ω ∈ Ω, then

|G|/|Gω| = |ωG|.

Proof. We show that f : G/Gω −→ ωG , Gωg 7−→ ωg is a bijection:
well-defined: Gωg = Gωh ⇒ Gωgh−1 = Gω ⇒ gh−1 ∈ Gω ⇒ ωgh−1

= ω ⇒
ωg = ωh .
surjective: Let ωg ∈ ωG. Then f(Gωg) = ωg .
injective: Let ωg = ωh. Then ωgh−1

= ω ⇒ gh−1 ∈ Gω ⇒ g ∈ Gωh ⇒
Gωg ⊆ Gωh, and Gωh ⊆ Gωg similarly, i.e. Gωh = Gωg .

In the following we will assume that G is a finite group acting on Ω,
G = 〈S〉 with |S| = r and |Ω| = n.

The above proposition leads us to a possible way to calculate the order of
(big) permutation groups that are given by relatively few generators s ∈ S.
We have |G| = |αG||Gα|, so if we could calculate |ωG| and if we could find
generators for the stabilizer Gα, we would have reduced the problem to the
smaller problem of finding the order of Gα. It turns out that the first part is
easy to achieve, but the second part is a bit harder to do in an efficient way:

1.2 Schreier Trees and Schreier’s Lemma

Schreier Trees A Schreier tree with root α for S is a representation of the
orbit of α in the following sense:

It’s a tree rooted at α with the elements of αG as its vertices, and its
edges describing the elements of S needed to get from α to each vertex, i.e.
each edge {i, j} in the tree with i closer to the root than j is labeled by a
generator s ∈ S moving i to j.

Schreier trees can be found by Breadth First Search (or Depth First
Search) starting from α and applying all generators s ∈ S trying to reach a
new point αs. So the time needed to calculate a Schreier tree is bounded by
O(rn). So we can find |αG| in an efficient way.

The procedure ScheierTree(int alpha): In my C++ implementations
not the entire Schreier tree is stored, but only a coset representative tω for
each point ω of the orbit, i.e. the product of the permutations we see as labels

2

of the edges when we go from α to ω. These tω are stored in cosrep[ω],
where cosrep[ω] is set to undefined if the point ω is not in the orbit. The
size of the orbit is denoted by cosreps.

The following important result states how a Schreier tree for α can be
used to find generators for the Stabilizer Gα:

Proposition 1.2 (Schreier’s Lemma). Let G = 〈S〉. Then the stabilizer
Gα of α is generated by the set of Schreier generators:

Gα = 〈ti s t−1
is | i ∈ αG, s ∈ S〉

where ti is defined to be an element of G moving α to i, i.e. a coset
representative of i.

Proof. We show both inclusions:

⊇ : Clear by definition of the Schreier generators: ti moves α to i, s

moves i to is and t−1
is moves is back to α.

⊆ : Let g ∈ Gα. Then g = s1 · · · sr is a product of elements si ∈ S.
Suppose r > 0 (i.e. g 6= 1). Let j be the maximal index such that s1, . . . , sj

is a path in the Schreier tree with root α. Let β = αs1···sj , tβ = s1 · · · sj. Now
consider (tβ s t−1

βs)−1g, where s = sj+1, and rewrite is as

(tβ s t−1
βs)−1g = tβss−1(s1 · · · sj)

−1s1 · · · sr = tβssj+2 · · · sr

Then we apply the same reasoning to this element. Since tβs corresponds to
a path in the tree from α, this procedure will end with en element tγ in at
most r−j steps. However, as all elements at the left-hand-side of the equality
stabilize α, the element tγ has to be the trivial element. This implies that g
is an element in the group generated by the Schreier generators.

1.3 Bases and strong generating sets

A base B for G is a sequence B = (b1, . . . , bk) ⊆ Ω such that the pointwise
stabilizer Gb1,...,bk

is trivial.

A strong generating set (SGS) for G relative to B is a set S ⊆ G such
that 〈S ∩ G(i)〉 = G(i) for each i, where G(i) := Gb1,...,bi

, G(0) := G. [3]

3

2 Algorithms

In the following we give the description and implementation of 3 types of
the Schreier-Sims Algorithm to calculate the order of a permutation group
G. As a ’by-product’, these 3 algorithms are also able to compute a base and
a strong generating set for G.

All programs were developed using gcc, but should also work with any
other C++ compiler. All programs share the same input format:

The first input is n, i.e. the size of Ω = {1, . . . , n}.

The second input is r, the number of generators for the group.

The following rn input numbers describe the r generators in image
format, i.e. for each generator the image of the point 1 followed by the
image of the point 2 up to the image of the point n is stated.

The 2+ rn input integer numbers can be separated by one or more space
or enter characters, i.e. for example the permutations from the ATLAS of
Finite Group Representations [4] in Meataxe format can be inserted directly
by Copy-Paste.

2.1 Basic Schreier-Sims Algorithm

Implementation: basic-schreier-sims.cpp

Algorithm 1:

1. If G is non-trivial, choose a point b ∈ Ω that has not yet been chosen.

2. Calculate a Schreier tree with root b and obtain |bG|.

3. Use Schreier’s Lemma to find generators for Gb.

4. Apply this algorithm recursively for Gb, to find |Gb|.

4

If we denote the choosen points b by b1, . . . , bm and if we write G(i) for
Gb1,...,bi

as before, the algorithm will calculate the order of our group G as

|G| = |bG(0)

1 ||bG(1)

2 | · · · |bG(m−1)

m |. (1)

The algorithm will stop as soon as G(m), the pointwise stabilizer of b1, . . . , bm,
is the trivial group (i.e. as soon as no non-trivial element in G fixes all the
points b1, . . . , bm). Obviously this will be the case after at most n steps.

The problem is that in each step, the number of generators obtained by
Schreier’s lemma grows by the factor |bG|, so in the worst case (if each orbit
is the entire Ω and it takes n steps to finish), we have rnn generators at the
end. So this algorithm needs exponential amount of memory, and so is not
practicable for n ≈ 100.

Lemma 2.1. The running time of the Basic Schreier-Sims Algorithm is
exponential.

This makes it clear that we have to improve the algorithm in order to
make it usefull in practice. In the following two sections we will give two
possible ways of significant improvements.

Note that when the algorithm stops, (b1, . . . , bm) is a base, and the union
of all the generators we have found is a strong generating set.

2.2 Schreier-Sims Algorithm with Jerrum’s Filter

Implementation: sims-with-jerrums.cpp

The following proposition makes it possible to improve the basic algorithm
descibed above so that surprisingly the number of generators for G(i) does
not increase at all during execution of the algorithm:

Proposition 2.2 (Jerrum’s Filter). [2] Any subgroup of Sn can be gen-
erated by at most n − 1 elements. Moreover, such a generating set can be
found ’on-line’, in the sense that if S is a suitable generating set for H and
g any element of Sn, then is is possible to find a suitable generating set S ′

for 〈H, g〉.

Proof. Let Ω = {1, 2, . . . , n}. With any non-identity permutation g of Ω, we
associate an element and a 2-subset of Ω as follows:

5

• i(g) is the smallest point of Ω moved by g;

• e(g) = {i(g), i(g)g}.

Now, given any set S of permutations, the set e(S) = {e(g)|g ∈ S} is the
edge set of a graph on the vertex set Ω. We claim that

any subgroup of Sn can be generated by a subset of S such that the graph
e(S) contains no cycles.

This will prove the theorem, since an acyclic graph on n vertices has at most
n− 1 edges (with equality if and only if it is a tree). So suppose that e(S) is
acyclic and g is any permutation. We want an ’acyclic’ generating set S ′ for
〈S, g〉. There are three cases:

• g = 1. Then take S ′ := S

• e(S ∪ {g}) is acyclic. Take S ′ := S ∪ {g}

• e(S ∪ {g}) contains a unique cycle, which includes e(g). Let S1 :=
S ∪ {g}. Moreover, for any set T of permutations containing a unique
cycle, we let m(T) :=

∑
g∈T i(g). We show how to construct from S1

a set S2 with 〈S2〉 = 〈S1〉 such that either e(S2) is acyclic, or e(S2)
contains a unique cycle and m(S2) > m(S1). Since m(T) is bounded
above for any such set (for example, by n2, since there are at most n
permutations and i(g) 6 n for any g 6= 1), the second alternative can
only occur finitely many times, and eventually we reach a set S ′ such
that 〈S ′〉 = 〈S1〉 and e(S ′) is acyclic. Take this as the required S ′.

It remains to show how to do the replacement step above.
Let C be the unique cycle in e(S1), and let i be the smallest point lying

on any edge on C. Then we can travel round the cycle starting at i, recording
our progress by elements g or g−1 according as the edge is from i(g) to i(g)g or
vice versa. We obtain a product h = gε1

i1
· · · gεk

ik
, with εj = ±1 for 1 6 j 6 k,

such that h fixes i. Clearly it also fixes every point smaller than i. So, if we
delete from Si the element gi1 and replace it with h, we increase the value of
m (since i(h) > i(gi1) = i). Moreover, removing gi1 produces an acyclic set,
and so the addition of h at worst creates one cycle; and gi1 can be expressed
in terms of h and the other generators, so the groups generated by the two
sets are equal.

This concludes the proof.

6

Now we can use this filter for the Schreier generators in our algorithm:

Algorithm 2:

1. If G is non-trivial, choose a point b ∈ Ω that has not yet been chosen.

2. Calculate a Schreier tree with root b and obtain |bG|.

3. Use Schreier’s Lemma to find generators for Gb.

4. ’Throw’ the Schreier generators for Gb one-by-one into Jerrums Filter,
to keep the the number of generators for Gb bounded by n− 1.

5. Apply this algorithm recursively for Gb, to find |Gb|.

Lemma 2.3. The running time of the Schreier-Sims Algorithm with Jer-
rum’s Filter is O(n7), i.e. polynomial in n.

Proof. .

Claim: Proceeding a permutation through Jerrum’s filter takes O(n4)
time.

Proof: When we ’throw’ a new generator into Jerrum’s filter, the
number of times we have to do a replacement step until the condition is
satisfied is bounded by n2 (see above). Doing a replacement step takes
O(n2) time (at most n for finding2 the cycle, at most n for finding it’s
smallest vertex, and at most n2 for traveling i.e. multiplying around
the cycle).

Now during execution of the algorithm, there at most n basepoints, and
for each of the stabilizers G(i) there at most n(n− 1) Schreier generators3 we
have to throw into Jerrum’s filter. So the running time of the algorithm is
O(n3n4).

2To find a cycle we do a depth-first search, visiting each vertex at most once.
3In case there are r > n generators given at the beginning, we apply Jerrum’s filter r-n

times before we start the algorithm.

7

Note that when the algorithm stops, (b1, . . . , bm) is a base, and the union of
all the generators we have found is a strong generating set of size 6 m(n−1) =
O(n2).

2.3 The Incremental Schreier-Sims Algorithm

Implementation: incremental-sims.cpp

In this section we will look at a fast algorithm to construct a strong
generating set. If we have a strong generating set for a group G, it’s easy
to compute the order of the G because we instantly have generators for all
Stabilizers G(i) we need in equation (1).

A partial base B = [b1, . . . , bk], and a partial strong generating set S is a
set B ⊆ Ω and a set S ⊆ G such that no element of S fixes every element of
B.

We give an algorithm that takes any partial base and partial strong gen-
erating set, and transforms it into a base and strong generating set. The
following is somethimes referred as the incremental Schreier-Sims Algorithm:

Algorithm 3:

1. If S = {} return B, S

2. At this point we have a nonempty partial base B = (b1, . . . , bk), and a
partial strong generating set S. Set C := [b2, . . . , bk] , T := S ∩ Gb1,
and apply this algorithm (recursively) with input C, T , so that they are
modified to be a base and associated strong generating set for H = 〈T 〉.

3. Set B := B ∪ C, S := S ∪ T . Now we can do membership testing in
H 6 Gb1 , using the sifting algorithm. We test each Schreier generator
s for Gb1 to see if s ∈ H. If all of them are in H then we have H = Gb1

and we are done, and return B, S.

4. Otherwise we have a Schreier generator s ∈ Gb1 but s /∈ H. We set
S := S ∪ {s}. If s fixes all points of B, we append to B a point of Ω
which is moved by s. We now go to step 2. [1]

8

We describe the action of G(i) on the cosets of G(i+1) by a Schreier tree
we call ”Ti+1”

The Sifting Procedure (Membership test in a group given by generators)
Suppose g is an arbitrary element of Sym(Ω). We now describe a proce-

dure called ’sifting’, which either writes g as a word in the elements of the
strong generating set S for G or shows that g /∈ G. First suppose that g
fixes each base point b1, . . . , bk. If g = 1 then g ∈ G is the empty word in the
strong generators, and if g 6= 1 then g /∈ G. Now we may suppose that g fixes
each of b1, . . . , bi for some i < k, and moves bi+1. If bg

i+1 /∈ bGi

i+1, then we con-
clude that g /∈ G. Otherwise, by using the Schreier tree Ti+1 we find elements
s1, . . . , sr of S ∩ Gi such that bg

i+1 = bs1,...,sr

i+1 . Then h := g(s1 · · · sr)
−1 fixes

each of b1, . . . , bi+1. We may now (recursively) apply the sifting procedure to
h to either determine that h, and hence g is not in G, or to find a word v in
the elements of S ∩Gi+1 such that v = h. In the later case, g = vs1 · · · sr is
a word in the strong generators from S. [1]

Lemma 2.4. The running time of the Incremental Schreier-Sims Algorithm
is O(n8 log3 n), i.e. polynomial in n.

Proof. Let λi be the number of times a new generator s is added to S ∩G(i)

during execution of the algorithm.
Every time a new generator s is added to S ∩ G(i), the size of 〈S ∩ G(i)〉

at least doubles (since when s ∈ G(i) −H, for every g ∈ H we have gs /∈ H).
Therefore λi 6 log |G(i)| and the overall number of times a new generator

s is added satisfies

|S| − r =
m∑

i=1

λi 6
m∑

i=1

log |G(i)| 6
m∑

i=1

log |G| 6 n log n! = O(n2 log n)

So at the end we have |S| = O(n2 log n) generators4, and for every one
of these - when is is added to S ∩ G(i) - we have to sift at most n(λi +
r) = O(n2 log n) Schreier generators5 to see if they are in H. So there are
O(n4 log2 n) Sifting processes.

Sifting takes at most n times the time of building a Schreier tree, since
with every call of the Sifting procedure the sifted element stabilizes one more
point.

4Supposed that the number of input generators, r, is either fixed or O(n2 log n)
5Supposed that the number of input generators, r, is either fixed or O(n log n)

9

Building a Schreier tree when we have t generators is O(n2 + nt), or
O(nt) for t > n. So in our case, since we have bounded our number of
(Schreier) generators t by O(n2 log n), every Sifting process can be done in
nO(n(n2 log n)) = O(n4 log n).

Note that when the algorithm stops, B is a base, and S is a strong gener-
ating set of size O(n2 log n).

The major speed-up of this algorithm compared to the basic first ver-
sion of the Schreier-Sims algorithm comes from the fact that this algorithm
avoids the inclusion of many redundant (schreier) generators, by only adding
generators to S that are outside 〈S ∩G(i)〉.

2.4 Summary

We can summarize our results for the running times and the sizes of the
strong generating sets produced by the 3 algorithms in the following table:

Algorithm Running time Size of produced SGS
Basic Schreier-Sims O(nn) O(nn)
Jerrum’s Filter O(n7) O(n2)
Incremental Schreier-Sims O(n8 log3 n) O(n2 log n)

10

3 Applications

The orders of the following groups were calculated with one or both of
the implementations sims-with-jerrums.cpp and incremental-sims.cpp.
The last two columns state the running time in seconds, where both pro-
grams were running on a sun machine with a 500 MHz processor.

Group |Ω| |G| t Jerrums t Inc.Sims
S10 10 10! <0.5 <0.5
S20 20 20! <0.5 1.0
S30 30 30! 1.6 7.3
S40 40 40! 7.6 30.2
S50 50 50! 21.8 94.0
S60 60 60! 54.6 243.4
S70 70 70! 122.3 564.8
J1 (Janko group) 266 175560 <0.5 13.1
McL (McLaughlin grp) 275 898128000 2.2 92.4
Co3 (Conway group) 276 495766656000 12.9 412.0
52+2+4 : (S3 ×GL2(5)) 6 750 1125000000 47.3 -
Exeptional group 2F4(2)′ 1600 17971200 22.3 -
Suz (Suzuki group) 1782 448345497600 some time -

The test with the ’full’ permutations groups Sn was made using a single
transposition and a left shift as generators for the group7, e.i. the input was

n

2

2 1 3 4 ... n

n 1 2 ... n-1

Two generators for each of the other groups were taken from [4].

6[4] states that this is one of the maximal subgroups of the Monster group M
7using the fact that every transposition can be written as a product of these two

permutations, and that every permutation can be written as a product of transpositions.

11

Comparison of the two algorithms for input Sn:

S10 S20 S30 S40 S50 S60 S70
0

150

300

450

600

jerrums filter
incremental schreier sims

Running times in seconds to calculate the order (n!) of Sn for n = 10, 20, . . . , 70.

If we make the very simplified proposal for the running time that t = cnp,
we can determine a very experimental ’degree’ of the running time polyno-
mial, given two measured runs:

t1 = cnp
1 , t2 = cnp

2 ⇒ p =
log t2

t1

log n2

n1

For n1 = 60, n2 = 70 and input Sn we get a degree for sims-with-jerrums.cpp
of 5.23 compared to 5.46 for incremental-sims.cpp.

12

4 Appendix - Some remarks about the pro-

grams

The input format for all implementations was already stated above. For
storing and calculating with permutations, the 3 programs make use of the
class Permutation. The class stores the permutations in image format, i.e.
the image of each point i is stored in g.p[i] 8. The class allows multiplication
of two permutations; g*h becomes gh where the products are read from left
to right. It further allows inversion (g.inverse()), comparison (g == h),
input (g.input()) and output (g.output()) of permutations, each of these
elementary functions taking time O(n).

4.1 basic-schreier-sims.cpp

The procedure void ScheierTree(int alpha) performes a depth-first
search to determine the orbit of alpha ∈ {0, . . . , n − 1} under the group
generated by the actual generators g. For each orbit point i that it finds,
it stores a coset representative in cosrep[i], i.e. a permutation that maps
alpha to i. Otherwise cosrep[i] remains the undefined permutation.

The procedure void SchreierSims() implements Algorithm 1 by choos-
ing new base points alpha as long as the group 〈g〉 is non-trivial. In each
step it calculates the orbit of alpha (ScheierTree(alpha)) and then applies
Schreier’s lemma to new get generators newg for Galpha. Finally it replace
the generators g by these new generators, ready to call the algorithm again.
This implementation will only add Schreier generators that did not occur
yet, but this unfortunately does not mean they are not redundant.

4.2 sims-with-jerrums.cpp

This implements Algorithm 2, and uses the same basic structure as
basic-schreier-sims.cpp, but with addition of Jerrum’s filter.
void JerrumsFilter() actually calculates the same Schreier generators as
described before, but instead of storing them, each of them is getting ’thrown’
into Jerrum’s filter. This is realized by void ThrowIn(Permutation g).

8before storage, the points {1, . . . , n} are mapped onto {0, . . . , n− 1} for making them
usable in C/C++ arrays.

13

JVertex[i] represents the vertex of Jerrum’s graph corresponding to point
i. It has a list neighbor of it’s neigbor vertices, and a list isneighbor, where
if j is a neighbor of i, isneighbor[j] points to the index of j in the neighbor
list, and otherwise is set to −1. Additionally a boolean variable visited is
used by the FindCycle procedure when searching for a cycle in the graph.

The program sims-with-jerrums-n^ 3.cpp stores a permutation perm

for every possible neighbor for each vertex in Jerrum’s graph, which results
in using memory for n3 integers, but making the program a bit easier to read.
The improved progam sims-with-jerrums.cpp only keeps a separate list jg
of the permutations that are really edges of Jerrum’s graph, and so only uses
O(n2) in space.

4.3 incremental-sims.cpp

This program implements Algorithm 3, where basepoint is used to store
the partial base B and sgs is used to store S, the partial strong generating
set. There is a small modification to the Permutation data structure used
in the programs above: for each permutation g the first basepoint moved by
g is stored in g.fbp. This makes it much faster to get access to the sets
S ∩G(i) that we use during the algorithm.

The boolean function bool Sifting(Permutation h) implements the
Sifting procedure described in section 2.3, i.e. returns if h ∈ 〈S ∩ G(i)〉 or
not.

After execution of SchreierSims(), sgs contains a strong generating set
for the group G, and the order of G is then simply calculated using this SGS.

14

References

[1] A. M. Cohen, H. Cuypers, H. Sterk (1999), Some Tapas of Computer
Algebra, Springer Verlag, pp 184-194

[2] P. J. Cameron (1999), Permutation Groups, London Math. Soc. Student
Texts 45, Cambridge University Press, Sections 1.13 and 1.14

[3] Á. Seress (2003), Permutation Group Algorithms, Cambridge Tracts in
Mathematics, Cambridge University Press, pp 55-62

[4] Conway, Curtis, Norton, Parker, Wilson (1985), ATLAS of Finite Group
Representations, http://web.mat.bham.ac.uk/atlas

15

